Estimating Exoplanet Mass using Machine Learning on Incomplete Datasets
- URL: http://arxiv.org/abs/2410.06922v1
- Date: Wed, 9 Oct 2024 14:19:33 GMT
- Title: Estimating Exoplanet Mass using Machine Learning on Incomplete Datasets
- Authors: Florian Lalande, Elizabeth Tasker, Kenji Doya,
- Abstract summary: More than 70% of discovered planets have no measured planet mass.
We show how machine learning algorithms can be used to estimate missing properties for imputing planet mass.
- Score: 1.6231541773673115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exoplanet archive is an incredible resource of information on the properties of discovered extrasolar planets, but statistical analysis has been limited by the number of missing values. One of the most informative bulk properties is planet mass, which is particularly challenging to measure with more than 70\% of discovered planets with no measured value. We compare the capabilities of five different machine learning algorithms that can utilize multidimensional incomplete datasets to estimate missing properties for imputing planet mass. The results are compared when using a partial subset of the archive with a complete set of six planet properties, and where all planet discoveries are leveraged in an incomplete set of six and eight planet properties. We find that imputation results improve with more data even when the additional data is incomplete, and allows a mass prediction for any planet regardless of which properties are known. Our favored algorithm is the newly developed $k$NN$\times$KDE, which can return a probability distribution for the imputed properties. The shape of this distribution can indicate the algorithm's level of confidence, and also inform on the underlying demographics of the exoplanet population. We demonstrate how the distributions can be interpreted with a series of examples for planets where the discovery was made with either the transit method, or radial velocity method. Finally, we test the generative capability of the $k$NN$\times$KDE to create a large synthetic population of planets based on the archive, and identify potential categories of planets from groups of properties in the multidimensional space. All codes are Open Source.
Related papers
- Exoplanets Prediction in Multi-Planetary Systems and Determining the
Correlation Between the Parameters of Planets and Host Stars Using Artificial
Intelligence [0.0]
We search for additional exoplanets in 229 multi-planetary systems that house at least three or more confirmed planets.
We employ efficient machine learning approaches to analyze a dataset comprising 762 confirmed exoplanets and eight Solar System planets.
For giant planets, we observe a strong correlation between planetary radius and the mass of their host stars, which might provide intriguing insights into the relationship between giant planet formation and stellar characteristics.
arXiv Detail & Related papers (2024-02-27T21:28:08Z) - DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
We develop DBNets, a tool to quickly infer the mass of allegedly embedded planets from protoplanetary discs.
We extensively tested our tool on out-of-distribution data.
DBNets can identify inputs strongly outside its training scope returning an uncertainty above a specific threshold.
It can be reliably applied only on discs observed with inclinations below approximately 60deg, in the optically thin regime.
arXiv Detail & Related papers (2024-02-19T19:00:09Z) - Multiple Random Masking Autoencoder Ensembles for Robust Multimodal
Semi-supervised Learning [64.81450582542878]
There is an increasing number of real-world problems in computer vision and machine learning.
In the case of Earth Observations from satellite data, it is important to be able to predict one observation layer.
arXiv Detail & Related papers (2024-02-12T20:08:58Z) - Identification and Classification of Exoplanets Using Machine Learning
Techniques [0.0]
We consider building upon some existing work on exoplanet identification using residual networks for the data of the Kepler space telescope and its extended mission K2.
This paper aims to explore how deep learning algorithms can help in classifying the presence of exoplanets with less amount of data in one case and a more extensive variety of data in another.
arXiv Detail & Related papers (2023-05-16T16:51:07Z) - Revisiting mass-radius relationships for exoplanet populations: a
machine learning insight [0.0]
We employ efficient machine learning approaches to analyze a dataset comprising 762 confirmed exoplanets and eight Solar System planets.
By applying different unsupervised clustering algorithms, we classify the data into two main classes:'small' and 'giant' planets.
Our analysis highlights that planetary mass, orbital period, and stellar mass play crucial roles in predicting exoplanet radius.
arXiv Detail & Related papers (2023-01-17T19:15:06Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - Locating Hidden Exoplanets in ALMA Data Using Machine Learning [10.316742952272394]
We demonstrate that machine learning can quickly and accurately detect the presence of planets.
We train our model on synthetic images generated from simulations and apply it to real observations to identify forming planets in real systems.
arXiv Detail & Related papers (2022-11-17T14:02:16Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - Data-Efficient Learning via Minimizing Hyperspherical Energy [48.47217827782576]
This paper considers the problem of data-efficient learning from scratch using a small amount of representative data.
We propose a MHE-based active learning (MHEAL) algorithm, and provide comprehensive theoretical guarantees for MHEAL.
arXiv Detail & Related papers (2022-06-30T11:39:12Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
This paper describes sits, an open-source R package for satellite image time series analysis using machine learning.
We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome.
arXiv Detail & Related papers (2022-04-24T15:23:25Z) - Exoplanet Detection using Machine Learning [0.0]
We introduce a new machine learning based technique to detect exoplanets using the transit method.
For Kepler data, the method is able to predict a planet with an AUC of 0.948, so that 94.8 per cent of the true planet signals are ranked higher than non-planet signals.
For the Transiting Exoplanet Survey Satellite (TESS) data, we found our method can classify light curves with an accuracy of 0.98, and is able to identify planets with a recall of 0.82 at a precision of 0.63.
arXiv Detail & Related papers (2020-11-28T14:06:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.