Zero-Shot Generalization of Vision-Based RL Without Data Augmentation
- URL: http://arxiv.org/abs/2410.07441v1
- Date: Wed, 9 Oct 2024 21:14:09 GMT
- Title: Zero-Shot Generalization of Vision-Based RL Without Data Augmentation
- Authors: Sumeet Batra, Gaurav S. Sukhatme,
- Abstract summary: Generalizing vision-based reinforcement learning (RL) agents to novel environments remains a difficult and open challenge.
We propose a model, Associative Latent DisentAnglement (ALDA), that builds on standard off-policy RL towards zero-shot generalization.
- Score: 11.820012065797917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalizing vision-based reinforcement learning (RL) agents to novel environments remains a difficult and open challenge. Current trends are to collect large-scale datasets or use data augmentation techniques to prevent overfitting and improve downstream generalization. However, the computational and data collection costs increase exponentially with the number of task variations and can destabilize the already difficult task of training RL agents. In this work, we take inspiration from recent advances in computational neuroscience and propose a model, Associative Latent DisentAnglement (ALDA), that builds on standard off-policy RL towards zero-shot generalization. Specifically, we revisit the role of latent disentanglement in RL and show how combining it with a model of associative memory achieves zero-shot generalization on difficult task variations without relying on data augmentation. Finally, we formally show that data augmentation techniques are a form of weak disentanglement and discuss the implications of this insight.
Related papers
- A Recipe for Unbounded Data Augmentation in Visual Reinforcement Learning [12.889687274108248]
A Q-learning algorithm is prone to overfitting and training instabilities when trained from visual observations.
We propose a generalized recipe, SADA, that works with wider varieties of augmentations.
We find that our method, SADA, greatly improves training stability and generalization of RL agents across a diverse set of augmentations.
arXiv Detail & Related papers (2024-05-27T17:58:23Z) - Improving Generalization of Alignment with Human Preferences through
Group Invariant Learning [56.19242260613749]
Reinforcement Learning from Human Feedback (RLHF) enables the generation of responses more aligned with human preferences.
Previous work shows that Reinforcement Learning (RL) often exploits shortcuts to attain high rewards and overlooks challenging samples.
We propose a novel approach that can learn a consistent policy via RL across various data groups or domains.
arXiv Detail & Related papers (2023-10-18T13:54:15Z) - Agent-Controller Representations: Principled Offline RL with Rich
Exogenous Information [49.06422815335159]
Learning to control an agent from data collected offline is vital for real-world applications of reinforcement learning (RL)
This paper introduces offline RL benchmarks offering the ability to study this problem.
We find that contemporary representation learning techniques can fail on datasets where the noise is a complex and time dependent process.
arXiv Detail & Related papers (2022-10-31T22:12:48Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under
Data Augmentation [25.493902939111265]
We investigate causes of instability when using data augmentation in off-policy Reinforcement Learning algorithms.
We propose a simple yet effective technique for stabilizing this class of algorithms under augmentation.
Our method greatly improves stability and sample efficiency of ConvNets under augmentation, and achieves generalization results competitive with state-of-the-art methods for image-based RL.
arXiv Detail & Related papers (2021-07-01T17:58:05Z) - Generalization of Reinforcement Learning with Policy-Aware Adversarial
Data Augmentation [32.70482982044965]
We propose a novel policy-aware adversarial data augmentation method to augment the standard policy learning method with automatically generated trajectory data.
We conduct experiments on a number of RL tasks to investigate the generalization performance of the proposed method.
The results show our method can generalize well with limited training diversity, and achieve the state-of-the-art generalization test performance.
arXiv Detail & Related papers (2021-06-29T17:21:59Z) - Generalization in Reinforcement Learning by Soft Data Augmentation [11.752595047069505]
SOft Data Augmentation (SODA) is a method that decouples augmentation from policy learning.
We find SODA to significantly advance sample efficiency, generalization, and stability in training over state-of-the-art vision-based RL methods.
arXiv Detail & Related papers (2020-11-26T17:00:34Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z) - Transient Non-Stationarity and Generalisation in Deep Reinforcement
Learning [67.34810824996887]
Non-stationarity can arise in Reinforcement Learning (RL) even in stationary environments.
We propose Iterated Relearning (ITER) to improve generalisation of deep RL agents.
arXiv Detail & Related papers (2020-06-10T13:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.