Generalizing Segmentation Foundation Model Under Sim-to-real Domain-shift for Guidewire Segmentation in X-ray Fluoroscopy
- URL: http://arxiv.org/abs/2410.07460v1
- Date: Wed, 9 Oct 2024 21:59:48 GMT
- Title: Generalizing Segmentation Foundation Model Under Sim-to-real Domain-shift for Guidewire Segmentation in X-ray Fluoroscopy
- Authors: Yuxuan Wen, Evgenia Roussinova, Olivier Brina, Paolo Machi, Mohamed Bouri,
- Abstract summary: Sim-to-real domain adaptation approaches utilize synthetic data from simulations, offering a cost-effective solution.
We propose a strategy to adapt SAM to X-ray fluoroscopy guidewire segmentation without any annotation on the target domain.
Our method surpasses both pre-trained SAM and many state-of-the-art domain adaptation techniques by a large margin.
- Score: 1.4353812560047192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Guidewire segmentation during endovascular interventions holds the potential to significantly enhance procedural accuracy, improving visualization and providing critical feedback that can support both physicians and robotic systems in navigating complex vascular pathways. Unlike supervised segmentation networks, which need many expensive expert-annotated labels, sim-to-real domain adaptation approaches utilize synthetic data from simulations, offering a cost-effective solution. The success of models like Segment-Anything (SAM) has driven advancements in image segmentation foundation models with strong zero/few-shot generalization through prompt engineering. However, they struggle with medical images like X-ray fluoroscopy and the domain-shifts of the data. Given the challenges of acquiring annotation and the accessibility of labeled simulation data, we propose a sim-to-real domain adaption framework with a coarse-to-fine strategy to adapt SAM to X-ray fluoroscopy guidewire segmentation without any annotation on the target domain. We first generate the pseudo-labels by utilizing a simple source image style transfer technique that preserves the guidewire structure. Then, we develop a weakly supervised self-training architecture to fine-tune an end-to-end student SAM with the coarse labels by imposing consistency regularization and supervision from the teacher SAM network. We validate the effectiveness of the proposed method on a publicly available Cardiac dataset and an in-house Neurovascular dataset, where our method surpasses both pre-trained SAM and many state-of-the-art domain adaptation techniques by a large margin. Our code will be made public on GitHub soon.
Related papers
- SAM-Driven Weakly Supervised Nodule Segmentation with Uncertainty-Aware Cross Teaching [13.5553526185399]
Automated nodule segmentation is essential for computer-assisted diagnosis in ultrasound images.
Recently, segmentation foundation models like SAM have shown impressive generalizability on natural images.
In this work, we devise a novel weakly supervised framework that effectively utilizes the segmentation foundation model to generate pseudo-labels.
arXiv Detail & Related papers (2024-07-18T14:27:54Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - Synthetic Data for Robust Stroke Segmentation [0.0]
Deep learning-based semantic segmentation in neuroimaging currently requires high-resolution scans and extensive annotated datasets.
We present a novel synthetic framework for the task of lesion segmentation, extending the capabilities of the established SynthSeg approach.
arXiv Detail & Related papers (2024-04-02T13:42:29Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
We propose a data manipulation based domain generalization method, called Automated Augmentation for Domain Generalization (AADG)
Our AADG framework can effectively sample data augmentation policies that generate novel domains.
Our proposed AADG exhibits state-of-the-art generalization performance and outperforms existing approaches.
arXiv Detail & Related papers (2022-07-27T02:26:01Z) - FUN-SIS: a Fully UNsupervised approach for Surgical Instrument
Segmentation [16.881624842773604]
We present FUN-SIS, a Fully-supervised approach for binary Surgical Instrument.
We train a per-frame segmentation model on completely unlabelled endoscopic videos, by relying on implicit motion information and instrument shape-priors.
The obtained fully-unsupervised results for surgical instrument segmentation are almost on par with the ones of fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-16T15:32:02Z) - Domain Adaptation via CycleGAN for Retina Segmentation in Optical
Coherence Tomography [0.09490124006642771]
We investigated the implementation of a Cycle-Consistent Generative Adrative Networks (CycleGAN) for the domain adaptation of Optical Coherence Tomography ( OCT) volumes.
This study was done in collaboration with the Biomedical Optics Research Group and Functional & Anatomical Imaging & Shape Analysis Lab at Simon Fraser University.
arXiv Detail & Related papers (2021-07-06T02:07:53Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.