AI-Press: A Multi-Agent News Generating and Feedback Simulation System Powered by Large Language Models
- URL: http://arxiv.org/abs/2410.07561v2
- Date: Thu, 12 Dec 2024 02:47:05 GMT
- Title: AI-Press: A Multi-Agent News Generating and Feedback Simulation System Powered by Large Language Models
- Authors: Xiawei Liu, Shiyue Yang, Xinnong Zhang, Haoyu Kuang, Libo Sun, Yihang Yang, Siming Chen, Xuanjing Huang, Zhongyu Wei,
- Abstract summary: We introduce AI-Press, an automated news drafting and polishing system based on multi-agent collaboration and Retrieval-Augmented Generation.
We develop a feedback simulation system that generates public feedback considering demographic distributions.
Our system shows significant improvements in news-generating capabilities and verifies the effectiveness of public feedback simulation.
- Score: 33.01589900111173
- License:
- Abstract: The rise of various social platforms has transformed journalism. The growing demand for news content has led to the increased use of large language models (LLMs) in news production due to their speed and cost-effectiveness. However, LLMs still encounter limitations in professionalism and ethical judgment in news generation. Additionally, predicting public feedback is usually difficult before news is released. To tackle these challenges, we introduce AI-Press, an automated news drafting and polishing system based on multi-agent collaboration and Retrieval-Augmented Generation. We develop a feedback simulation system that generates public feedback considering demographic distributions. Through extensive quantitative and qualitative evaluations, our system shows significant improvements in news-generating capabilities and verifies the effectiveness of public feedback simulation.
Related papers
- A Survey on LLM-based News Recommender Systems [3.295694699346357]
News recommender systems play a critical role in mitigating the information overload problem.
Due to the successful applications of large language model technologies, researchers have utilized Discriminative Large Language Models (DLLMs) or Generative Large Language Models (GLLMs) to improve the performance of news recommender systems.
Although several recent surveys review significant challenges for deep learning-based news recommender systems, there is a lack of a systematic survey on Large Language Model (LLM)-based news recommender systems.
arXiv Detail & Related papers (2025-02-13T22:13:59Z) - TrendSim: Simulating Trending Topics in Social Media Under Poisoning Attacks with LLM-based Multi-agent System [90.09422823129961]
We propose TrendSim, an LLM-based multi-agent system to simulate trending topics in social media under poisoning attacks.
Specifically, we create a simulation environment for trending topics that incorporates a time-aware interaction mechanism, centralized message dissemination, and an interactive system.
We develop LLM-based human-like agents to simulate users in social media, and propose prototype-based attackers to replicate poisoning attacks.
arXiv Detail & Related papers (2024-12-14T12:04:49Z) - Build An Influential Bot In Social Media Simulations With Large Language Models [7.242974711907219]
This study introduces a novel simulated environment that combines Agent-Based Modeling (ABM) with Large Language Models (LLMs)
We present an innovative application of Reinforcement Learning (RL) to replicate the process of opinion leader formation.
Our findings reveal that limiting the action space and incorporating self-observation are key factors for achieving stable opinion leader generation.
arXiv Detail & Related papers (2024-11-29T11:37:12Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Cognitive Biases in Large Language Models for News Recommendation [68.90354828533535]
This paper explores the potential impact of cognitive biases on large language models (LLMs) based news recommender systems.
We discuss strategies to mitigate these biases through data augmentation, prompt engineering and learning algorithms aspects.
arXiv Detail & Related papers (2024-10-03T18:42:07Z) - From Skepticism to Acceptance: Simulating the Attitude Dynamics Toward Fake News [38.990330255607276]
We introduce a Fake news propagation simulation framework based on large language models (LLMs)
Our simulation results uncover patterns in fake news propagation related to topic relevance, and individual traits, aligning with real-world observations.
arXiv Detail & Related papers (2024-03-14T15:40:13Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
"Prompt-and-Align" (P&A) is a novel prompt-based paradigm for few-shot fake news detection.
We show that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
arXiv Detail & Related papers (2023-09-28T13:19:43Z) - An Interactive Framework for Profiling News Media Sources [26.386860411085053]
We propose an interactive framework for news media profiling.
It combines the strengths of graph based news media profiling models, Pre-trained Large Language Models, and human insight.
With as little as 5 human interactions, our framework can rapidly detect fake and biased news media.
arXiv Detail & Related papers (2023-09-14T02:03:45Z) - FR-Detect: A Multi-Modal Framework for Early Fake News Detection on
Social Media Using Publishers Features [0.0]
Despite the advantages of these media in the news field, the lack of any control and verification mechanism has led to the spread of fake news.
We suggest a high accurate multi-modal framework, namely FR-Detect, using user-related and content-related features with early detection capability.
Experiments have shown that the publishers' features can improve the performance of content-based models by up to 13% and 29% in accuracy and F1-score.
arXiv Detail & Related papers (2021-09-10T12:39:00Z) - VMSMO: Learning to Generate Multimodal Summary for Video-based News
Articles [63.32111010686954]
We propose the task of Video-based Multimodal Summarization with Multimodal Output (VMSMO)
The main challenge in this task is to jointly model the temporal dependency of video with semantic meaning of article.
We propose a Dual-Interaction-based Multimodal Summarizer (DIMS), consisting of a dual interaction module and multimodal generator.
arXiv Detail & Related papers (2020-10-12T02:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.