A Survey for Deep Reinforcement Learning Based Network Intrusion Detection
- URL: http://arxiv.org/abs/2410.07612v1
- Date: Wed, 25 Sep 2024 13:39:30 GMT
- Title: A Survey for Deep Reinforcement Learning Based Network Intrusion Detection
- Authors: Wanrong Yang, Alberto Acuto, Yihang Zhou, Dominik Wojtczak,
- Abstract summary: This paper explores the potential and challenges of using deep reinforcement learning (DRL) in network intrusion detection.
The performance of DRL models is analyzed, showing that while DRL holds promise, many recent technologies remain underexplored.
The paper concludes with recommendations for enhancing DRL deployment and testing in real-world network scenarios.
- Score: 3.493620624883548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber-attacks are becoming increasingly sophisticated and frequent, highlighting the importance of network intrusion detection systems. This paper explores the potential and challenges of using deep reinforcement learning (DRL) in network intrusion detection. It begins by introducing key DRL concepts and frameworks, such as deep Q-networks and actor-critic algorithms, and reviews recent research utilizing DRL for intrusion detection. The study evaluates challenges related to model training efficiency, detection of minority and unknown class attacks, feature selection, and handling unbalanced datasets. The performance of DRL models is comprehensively analyzed, showing that while DRL holds promise, many recent technologies remain underexplored. Some DRL models achieve state-of-the-art results on public datasets, occasionally outperforming traditional deep learning methods. The paper concludes with recommendations for enhancing DRL deployment and testing in real-world network scenarios, with a focus on Internet of Things intrusion detection. It discusses recent DRL architectures and suggests future policy functions for DRL-based intrusion detection. Finally, the paper proposes integrating DRL with generative methods to further improve performance, addressing current gaps and supporting more robust and adaptive network intrusion detection systems.
Related papers
- D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Deep Reinforcement Learning for Intrusion Detection in IoT: A Survey [0.23408308015481666]
State-of-the-art DRL-based IDS methods have been classified into five categories including wireless sensor network (WSN), deep Q-network (DQN), healthcare, hybrid, and other techniques.
The most crucial performance metrics, namely accuracy, recall, precision, false negative rate (FNR), false positive rate (FPR), and F-measure, are detailed.
arXiv Detail & Related papers (2024-05-30T13:19:23Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - DRL-GAN: A Hybrid Approach for Binary and Multiclass Network Intrusion
Detection [2.7122540465034106]
Intrusion detection systems (IDS) are an essential security technology for detecting these attacks.
We implement a novel hybrid technique using synthetic data produced by a Generative Adversarial Network (GAN) to use as input for training a Deep Reinforcement Learning (DRL) model.
Our findings demonstrate that training the DRL on specific synthetic datasets can result in better performance in correctly classifying minority classes over training on the true imbalanced dataset.
arXiv Detail & Related papers (2023-01-05T19:51:24Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
Next Generation (NextG) networks are expected to support demanding internet tactile applications such as augmented reality and connected autonomous vehicles.
Data-driven approaches can improve the ability of the network to adapt to the current operating conditions.
Deep RL (DRL) has been shown to achieve good performance even in complex environments.
arXiv Detail & Related papers (2021-12-07T03:13:20Z) - Pessimistic Model Selection for Offline Deep Reinforcement Learning [56.282483586473816]
Deep Reinforcement Learning (DRL) has demonstrated great potentials in solving sequential decision making problems in many applications.
One main barrier is the over-fitting issue that leads to poor generalizability of the policy learned by DRL.
We propose a pessimistic model selection (PMS) approach for offline DRL with a theoretical guarantee.
arXiv Detail & Related papers (2021-11-29T06:29:49Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
We compare two Deep Reinforcement Learning algorithms: a pure DRL-based algorithm and a hybrid DRL as a hybrid DRL-heuristic algorithm.
The evaluation results show that the proposed hybrid DRL-heuristic approach is more robust and reliable in case of unpredictable network load changes than pure DRL.
arXiv Detail & Related papers (2021-08-05T10:24:33Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises.
Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions.
We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, is ineffective for many RL tasks.
arXiv Detail & Related papers (2020-03-19T17:59:59Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning [48.49658986576776]
Deep Reinforcement Learning (DRL) has numerous applications in the real world thanks to its outstanding ability in adapting to the surrounding environments.
Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications.
This paper presents emerging attacks in DRL-based systems and the potential countermeasures to defend against these attacks.
arXiv Detail & Related papers (2020-01-27T10:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.