Firzen: Firing Strict Cold-Start Items with Frozen Heterogeneous and Homogeneous Graphs for Recommendation
- URL: http://arxiv.org/abs/2410.07654v1
- Date: Thu, 10 Oct 2024 06:48:27 GMT
- Title: Firzen: Firing Strict Cold-Start Items with Frozen Heterogeneous and Homogeneous Graphs for Recommendation
- Authors: Hulingxiao He, Xiangteng He, Yuxin Peng, Zifei Shan, Xin Su,
- Abstract summary: We propose a unified framework incorporating multi-modal content of items and knowledge graphs (KGs) to solve both strict cold-start and warm-start recommendation.
Our model yields significant improvements for strict cold-start recommendation and outperforms or matches the state-of-the-art performance in the warm-start scenario.
- Score: 34.414081170244955
- License:
- Abstract: Recommendation models utilizing unique identities (IDs) to represent distinct users and items have dominated the recommender systems literature for over a decade. Since multi-modal content of items (e.g., texts and images) and knowledge graphs (KGs) may reflect the interaction-related users' preferences and items' characteristics, they have been utilized as useful side information to further improve the recommendation quality. However, the success of such methods often limits to either warm-start or strict cold-start item recommendation in which some items neither appear in the training data nor have any interactions in the test stage: (1) Some fail to learn the embedding of a strict cold-start item since side information is only utilized to enhance the warm-start ID representations; (2) The others deteriorate the performance of warm-start recommendation since unrelated multi-modal content or entities in KGs may blur the final representations. In this paper, we propose a unified framework incorporating multi-modal content of items and KGs to effectively solve both strict cold-start and warm-start recommendation termed Firzen, which extracts the user-item collaborative information over frozen heterogeneous graph (collaborative knowledge graph), and exploits the item-item semantic structures and user-user behavioral association over frozen homogeneous graphs (item-item relation graph and user-user co-occurrence graph). Furthermore, we build four unified strict cold-start evaluation benchmarks based on publicly available Amazon datasets and a real-world industrial dataset from Weixin Channels via rearranging the interaction data and constructing KGs. Extensive empirical results demonstrate that our model yields significant improvements for strict cold-start recommendation and outperforms or matches the state-of-the-art performance in the warm-start scenario.
Related papers
- Language-Model Prior Overcomes Cold-Start Items [14.370472820496802]
The growth ofRecSys is driven by digitization and the need for personalized content in areas such as e-commerce and video streaming.
Existing solutions for the cold-start problem, such as content-based recommenders and hybrid methods, leverage item metadata to determine item similarities.
This paper introduces a novel approach for cold-start item recommendation that utilizes the language model (LM) to estimate item similarities.
arXiv Detail & Related papers (2024-11-13T22:45:52Z) - Graph Neural Patching for Cold-Start Recommendations [16.08395433358279]
We introduce Graph Neural Patching for Cold-Start Recommendations (GNP)
GNP is a customized GNN framework with dual functionalities: GWarmer for modeling collaborative signal on existing warm users/items and Patching Networks for simulating and enhancing GWarmer's performance on cold-start recommendations.
Extensive experiments on three benchmark datasets confirm GNP's superiority in recommending both warm and cold users/items.
arXiv Detail & Related papers (2024-10-18T07:44:12Z) - Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item
Recommendation [71.5871100348448]
ColdGPT models item-attribute correlations into an item-attribute graph by extracting fine-grained attributes from item contents.
ColdGPT transfers knowledge into the item-attribute graph from various available data sources, i.e., item contents, historical purchase sequences, and review texts of the existing items.
Extensive experiments show that ColdGPT consistently outperforms the existing SCS recommenders by large margins.
arXiv Detail & Related papers (2023-06-26T07:04:47Z) - GPatch: Patching Graph Neural Networks for Cold-Start Recommendations [20.326139541161194]
Cold start is an essential and persistent problem in recommender systems.
State-of-the-art solutions rely on training hybrid models for both cold-start and existing users/items.
We propose a tailored GNN-based framework (GPatch) that contains two separate but correlated components.
arXiv Detail & Related papers (2022-09-25T13:16:39Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
The cold-start recommendation is an urgent problem in contemporary online applications.
We propose a meta-learning based cold-start sequential recommendation framework called metaCSR.
metaCSR holds the ability to learn the common patterns from regular users' behaviors.
arXiv Detail & Related papers (2021-10-18T08:11:24Z) - Privileged Graph Distillation for Cold Start Recommendation [57.918041397089254]
The cold start problem in recommender systems requires recommending to new users (items) based on attributes without any historical interaction records.
We propose a privileged graph distillation model(PGD)
Our proposed model is generally applicable to different cold start scenarios with new user, new item, or new user-new item.
arXiv Detail & Related papers (2021-05-31T14:05:27Z) - Cold-start Sequential Recommendation via Meta Learner [10.491428090228768]
We propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation.
Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user.
arXiv Detail & Related papers (2020-12-10T05:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.