Growing Efficient Accurate and Robust Neural Networks on the Edge
- URL: http://arxiv.org/abs/2410.07691v1
- Date: Thu, 10 Oct 2024 08:01:42 GMT
- Title: Growing Efficient Accurate and Robust Neural Networks on the Edge
- Authors: Vignesh Sundaresha, Naresh Shanbhag,
- Abstract summary: Current solutions rely on the Cloud to train and compress models before deploying to the Edge.
This incurs high energy and latency costs in transmitting locally acquired field data to the Cloud while also raising privacy concerns.
We propose GEARnn to grow and train robust networks entirely on the Edge device.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ubiquitous deployment of deep learning systems on resource-constrained Edge devices is hindered by their high computational complexity coupled with their fragility to out-of-distribution (OOD) data, especially to naturally occurring common corruptions. Current solutions rely on the Cloud to train and compress models before deploying to the Edge. This incurs high energy and latency costs in transmitting locally acquired field data to the Cloud while also raising privacy concerns. We propose GEARnn (Growing Efficient, Accurate, and Robust neural networks) to grow and train robust networks in-situ, i.e., completely on the Edge device. Starting with a low-complexity initial backbone network, GEARnn employs One-Shot Growth (OSG) to grow a network satisfying the memory constraints of the Edge device using clean data, and robustifies the network using Efficient Robust Augmentation (ERA) to obtain the final network. We demonstrate results on a NVIDIA Jetson Xavier NX, and analyze the trade-offs between accuracy, robustness, model size, energy consumption, and training time. Our results demonstrate the construction of efficient, accurate, and robust networks entirely on an Edge device.
Related papers
- SpikeBottleNet: Spike-Driven Feature Compression Architecture for Edge-Cloud Co-Inference [0.86325068644655]
We propose SpikeBottleNet, a novel architecture for edge-cloud co-inference systems.
SpikeBottleNet integrates a spiking neuron model to significantly reduce energy consumption on edge devices.
arXiv Detail & Related papers (2024-10-11T09:59:21Z) - EffCNet: An Efficient CondenseNet for Image Classification on NXP
BlueBox [0.0]
Edge devices offer limited processing power due to their inexpensive hardware, and limited cooling and computational resources.
We propose a novel deep convolutional neural network architecture called EffCNet for edge devices.
arXiv Detail & Related papers (2021-11-28T21:32:31Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
This paper describes the techniques and engineering practice behind Auto-Split, an edge-cloud collaborative prototype of Huawei Cloud.
To the best of our knowledge, there is no existing industry product that provides the capability of Deep Neural Network (DNN) splitting.
arXiv Detail & Related papers (2021-08-30T08:03:29Z) - perf4sight: A toolflow to model CNN training performance on Edge GPUs [16.61258138725983]
This work proposes perf4sight, an automated methodology for developing accurate models that predict CNN training memory footprint and latency.
With PyTorch as the framework and NVIDIA Jetson TX2 as the target device, the developed models predict training memory footprint and latency with 95% and 91% accuracy respectively.
arXiv Detail & Related papers (2021-08-12T07:55:37Z) - Latency-Memory Optimized Splitting of Convolution Neural Networks for
Resource Constrained Edge Devices [1.6873748786804317]
We argue that running CNNs between an edge device and the cloud is synonymous to solving a resource-constrained optimization problem.
Experiments done on real-world edge devices show that, LMOS ensures feasible execution of different CNN models at the edge.
arXiv Detail & Related papers (2021-07-19T19:39:56Z) - A Joint Energy and Latency Framework for Transfer Learning over 5G
Industrial Edge Networks [53.26338041079138]
We propose a transfer learning-enabled edge-CNN framework for 5G industrial edge networks.
In particular, the edge server can use the existing image dataset to train the CNN in advance.
With the aid of TL, the devices that are not participating in the training only need to fine-tune the trained edge-CNN model without training from scratch.
arXiv Detail & Related papers (2021-04-19T15:13:16Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Conditionally Deep Hybrid Neural Networks Across Edge and Cloud [6.442928757682793]
We propose a conditionally deep hybrid neural network for enabling AI-based fog computing.
The proposed network can be deployed in a distributed manner, consisting of quantized layers and early exits at the edge and full-precision layers on the cloud.
We show that with binarized layers at the edge, the proposed conditional hybrid network can process 65% of inferences at the edge, leading to 5.5x computational energy reduction.
arXiv Detail & Related papers (2020-05-21T18:18:43Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.