A Hate Speech Moderated Chat Application: Use Case for GDPR and DSA Compliance
- URL: http://arxiv.org/abs/2410.07713v1
- Date: Thu, 10 Oct 2024 08:28:38 GMT
- Title: A Hate Speech Moderated Chat Application: Use Case for GDPR and DSA Compliance
- Authors: Jan Fillies, Theodoros Mitsikas, Ralph Schäfermeier, Adrian Paschke,
- Abstract summary: This research presents a novel application capable of implementing legal and ethical reasoning into the content moderation process.
Two use cases fundamental to online communication are presented and implemented using technologies such as GPT-3.5, Solid Pods, and the rule language Prova.
The work proposes a novel approach to reason within different legal and ethical definitions of hate speech and plan the fitting counter hate speech.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The detection of hate speech or toxic content online is a complex and sensitive issue. While the identification itself is highly dependent on the context of the situation, sensitive personal attributes such as age, language, and nationality are rarely available due to privacy concerns. Additionally, platforms struggle with a wide range of local jurisdictions regarding online hate speech and the evaluation of content based on their internal ethical norms. This research presents a novel approach that demonstrates a GDPR-compliant application capable of implementing legal and ethical reasoning into the content moderation process. The application increases the explainability of moderation decisions by utilizing user information. Two use cases fundamental to online communication are presented and implemented using technologies such as GPT-3.5, Solid Pods, and the rule language Prova. The first use case demonstrates the scenario of a platform aiming to protect adolescents from potentially harmful content by limiting the ability to post certain content when minors are present. The second use case aims to identify and counter problematic statements online by providing counter hate speech. The counter hate speech is generated using personal attributes to appeal to the user. This research lays the groundwork for future DSA compliance of online platforms. The work proposes a novel approach to reason within different legal and ethical definitions of hate speech and plan the fitting counter hate speech. Overall, the platform provides a fitted protection to users and a more explainable and individualized response. The hate speech detection service, the chat platform, and the reasoning in Prova are discussed, and the potential benefits for content moderation and algorithmic hate speech detection are outlined. A selection of important aspects for DSA compliance is outlined.
Related papers
- Demarked: A Strategy for Enhanced Abusive Speech Moderation through Counterspeech, Detoxification, and Message Management [71.99446449877038]
We propose a more comprehensive approach called Demarcation scoring abusive speech based on four aspect -- (i) severity scale; (ii) presence of a target; (iii) context scale; (iv) legal scale.
Our work aims to inform future strategies for effectively addressing abusive speech online.
arXiv Detail & Related papers (2024-06-27T21:45:33Z) - Towards Interpretable Hate Speech Detection using Large Language Model-extracted Rationales [15.458557611029518]
Social media platforms are a prominent arena for users to engage in interpersonal discussions and express opinions.
There arises a need to automatically identify and flag instances of hate speech.
We propose to use state-of-the-art Large Language Models (LLMs) to extract features in the form of rationales from the input text.
arXiv Detail & Related papers (2024-03-19T03:22:35Z) - Towards Legally Enforceable Hate Speech Detection for Public Forums [29.225955299645978]
This research introduces a new perspective and task for enforceable hate speech detection.
We use a dataset annotated on violations of eleven possible definitions by legal experts.
Given the challenge of identifying clear, legally enforceable instances of hate speech, we augment the dataset with expert-generated samples and an automatically mined challenge set.
arXiv Detail & Related papers (2023-05-23T04:34:41Z) - Analyzing Norm Violations in Live-Stream Chat [49.120561596550395]
We study the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms.
We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch.
Our results show that appropriate contextual information can boost moderation performance by 35%.
arXiv Detail & Related papers (2023-05-18T05:58:27Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Assessing the impact of contextual information in hate speech detection [0.48369513656026514]
We provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter.
This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic.
arXiv Detail & Related papers (2022-10-02T09:04:47Z) - Having your Privacy Cake and Eating it Too: Platform-supported Auditing
of Social Media Algorithms for Public Interest [70.02478301291264]
Social media platforms curate access to information and opportunities, and so play a critical role in shaping public discourse.
Prior studies have used black-box methods to show that these algorithms can lead to biased or discriminatory outcomes.
We propose a new method for platform-supported auditing that can meet the goals of the proposed legislation.
arXiv Detail & Related papers (2022-07-18T17:32:35Z) - Hate Speech Classification Using SVM and Naive BAYES [0.0]
Many countries have developed laws to avoid online hate speech.
But as online content continues to grow, so does the spread of hate speech.
It is important to automatically process the online user contents to detect and remove hate speech.
arXiv Detail & Related papers (2022-03-21T17:15:38Z) - Beyond Plain Toxic: Detection of Inappropriate Statements on Flammable
Topics for the Russian Language [76.58220021791955]
We present two text collections labelled according to binary notion of inapropriateness and a multinomial notion of sensitive topic.
To objectivise the notion of inappropriateness, we define it in a data-driven way though crowdsourcing.
arXiv Detail & Related papers (2022-03-04T15:59:06Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - ETHOS: an Online Hate Speech Detection Dataset [6.59720246184989]
We present 'ETHOS', a textual dataset with two variants: binary and multi-label, based on YouTube and Reddit comments validated using the Figure-Eight crowdsourcing platform.
Our key assumption is that, even gaining a small amount of labelled data from such a time-consuming process, we can guarantee hate speech occurrences in the examined material.
arXiv Detail & Related papers (2020-06-11T08:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.