HARIVO: Harnessing Text-to-Image Models for Video Generation
- URL: http://arxiv.org/abs/2410.07763v1
- Date: Thu, 10 Oct 2024 09:47:39 GMT
- Title: HARIVO: Harnessing Text-to-Image Models for Video Generation
- Authors: Mingi Kwon, Seoung Wug Oh, Yang Zhou, Difan Liu, Joon-Young Lee, Haoran Cai, Baqiao Liu, Feng Liu, Youngjung Uh,
- Abstract summary: We present a method to create diffusion-based video models from pretrained Text-to-Image (T2I) models.
Key innovations include novel loss functions for temporal smoothness and a mitigating gradient sampling technique.
Our method, built on the frozen StableDiffusion model, simplifies training processes and allows for seamless integration with off-the-shelf models like ControlNet and DreamBooth.
- Score: 45.63338167699105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to create diffusion-based video models from pretrained Text-to-Image (T2I) models. Recently, AnimateDiff proposed freezing the T2I model while only training temporal layers. We advance this method by proposing a unique architecture, incorporating a mapping network and frame-wise tokens, tailored for video generation while maintaining the diversity and creativity of the original T2I model. Key innovations include novel loss functions for temporal smoothness and a mitigating gradient sampling technique, ensuring realistic and temporally consistent video generation despite limited public video data. We have successfully integrated video-specific inductive biases into the architecture and loss functions. Our method, built on the frozen StableDiffusion model, simplifies training processes and allows for seamless integration with off-the-shelf models like ControlNet and DreamBooth. project page: https://kwonminki.github.io/HARIVO
Related papers
- VideoGuide: Improving Video Diffusion Models without Training Through a Teacher's Guide [48.22321420680046]
VideoGuide is a novel framework that enhances the temporal consistency of pretrained text-to-video (T2V) models.
It improves temporal quality by interpolating the guiding model's denoised samples into the sampling model's denoising process.
The proposed method brings about significant improvement in temporal consistency and image fidelity.
arXiv Detail & Related papers (2024-10-06T05:46:17Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
Video virtual try-on aims to generate realistic sequences that maintain garment identity and adapt to a person's pose and body shape in source videos.
Traditional image-based methods, relying on warping and blending, struggle with complex human movements and occlusions.
We reconceptualize video try-on as a process of generating videos conditioned on garment descriptions and human motion.
Our solution, WildVidFit, employs image-based controlled diffusion models for a streamlined, one-stage approach.
arXiv Detail & Related papers (2024-07-15T11:21:03Z) - ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation [81.90265212988844]
We propose a training-free video method for generative video models in a plug-and-play manner.
We transform a video model into a self-cascaded video diffusion model with the designed hidden state correction modules.
Our training-free method is even comparable to trained models supported by huge compute resources and large-scale datasets.
arXiv Detail & Related papers (2024-06-03T00:31:13Z) - Photorealistic Video Generation with Diffusion Models [44.95407324724976]
W.A.L.T. is a transformer-based approach for video generation via diffusion modeling.
We use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities.
We also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of $512 times $ resolution at $8$ frames per second.
arXiv Detail & Related papers (2023-12-11T18:59:57Z) - BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models [40.73982918337828]
We propose a training-free general-purpose video synthesis framework, coined as bf BIVDiff, via bridging specific image diffusion models and general text-to-video foundation diffusion models.
Specifically, we first use a specific image diffusion model (e.g., ControlNet and Instruct Pix2Pix) for frame-wise video generation, then perform Mixed Inversion on the generated video, and finally input the inverted latents into the video diffusion models.
arXiv Detail & Related papers (2023-12-05T14:56:55Z) - ART$\boldsymbol{\cdot}$V: Auto-Regressive Text-to-Video Generation with
Diffusion Models [99.84195819571411]
ART$boldsymbolcdot$V is an efficient framework for auto-regressive video generation with diffusion models.
It only learns simple continual motions between adjacent frames.
It can generate arbitrarily long videos conditioned on a variety of prompts.
arXiv Detail & Related papers (2023-11-30T18:59:47Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation.
We identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning.
arXiv Detail & Related papers (2023-11-25T22:28:38Z) - LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation [44.220329202024494]
We present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 816 videos on a single GPU.
Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation.
To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers.
arXiv Detail & Related papers (2023-10-16T19:03:19Z) - SimDA: Simple Diffusion Adapter for Efficient Video Generation [102.90154301044095]
We propose a Simple Diffusion Adapter (SimDA) that fine-tunes only 24M out of 1.1B parameters of a strong T2I model, adapting it to video generation in a parameter-efficient way.
In addition to T2V generation in the wild, SimDA could also be utilized in one-shot video editing with only 2 minutes tuning.
arXiv Detail & Related papers (2023-08-18T17:58:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.