System 2 Reasoning via Generality and Adaptation
- URL: http://arxiv.org/abs/2410.07866v2
- Date: Fri, 22 Nov 2024 07:18:19 GMT
- Title: System 2 Reasoning via Generality and Adaptation
- Authors: Sejin Kim, Sundong Kim,
- Abstract summary: This paper explores the limitations of existing approaches in achieving advanced System 2 reasoning.
We propose four key research directions to address these gaps.
We aim to advance the ability to generalize and adapt, bringing computational models closer to the reasoning capabilities required for Artificial General Intelligence (AGI)
- Score: 5.806160172544203
- License:
- Abstract: While significant progress has been made in task-specific applications, current models struggle with deep reasoning, generality, and adaptation -- key components of System 2 reasoning that are crucial for achieving Artificial General Intelligence (AGI). Despite the promise of approaches such as program synthesis, language models, and transformers, these methods often fail to generalize beyond their training data and to adapt to novel tasks, limiting their ability to perform human-like reasoning. This paper explores the limitations of existing approaches in achieving advanced System 2 reasoning and highlights the importance of generality and adaptation for AGI. Moreover, we propose four key research directions to address these gaps: (1) learning human intentions from action sequences, (2) combining symbolic and neural models, (3) meta-learning for unfamiliar environments, and (4) reinforcement learning to reason multi-step. Through these directions, we aim to advance the ability to generalize and adapt, bringing computational models closer to the reasoning capabilities required for AGI.
Related papers
- Learning the Generalizable Manipulation Skills on Soft-body Tasks via Guided Self-attention Behavior Cloning Policy [9.345203561496552]
GP2E behavior cloning policy can guide the agent to learn the generalizable manipulation skills from soft-body tasks.
Our findings highlight the potential of our method to improve the generalization abilities of Embodied AI models.
arXiv Detail & Related papers (2024-10-08T07:31:10Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Human-like Category Learning by Injecting Ecological Priors from Large Language Models into Neural Networks [8.213829427624407]
We develop a class of models called ecologically rational meta-learned inference (ERMI)
ERMI quantitatively explains human data better than seven other cognitive models in two different experiments.
We show that ERMI's ecologically valid priors allow it to achieve state-of-the-art performance on the OpenML-CC18 classification benchmark.
arXiv Detail & Related papers (2024-02-02T16:32:04Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors.
This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI.
arXiv Detail & Related papers (2023-11-04T17:44:58Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
We study the challenge of analytical reasoning of text and introduce a new dataset consisting of questions from the Law School Admission Test from 1991 to 2016.
We analyze what knowledge understanding and reasoning abilities are required to do well on this task.
arXiv Detail & Related papers (2021-04-14T02:53:32Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - Neuro-evolutionary Frameworks for Generalized Learning Agents [1.2691047660244335]
Recent successes of deep learning and deep reinforcement learning have firmly established their statuses as state-of-the-art artificial learning techniques.
Longstanding drawbacks of these approaches point to a need for re-thinking the way such systems are designed and deployed.
We discuss the anticipated improvements from such neuro-evolutionary frameworks, along with the associated challenges.
arXiv Detail & Related papers (2020-02-04T02:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.