CL3: A Collaborative Learning Framework for the Medical Data Ensuring Data Privacy in the Hyperconnected Environment
- URL: http://arxiv.org/abs/2410.07900v2
- Date: Thu, 17 Oct 2024 11:33:40 GMT
- Title: CL3: A Collaborative Learning Framework for the Medical Data Ensuring Data Privacy in the Hyperconnected Environment
- Authors: Mohamamd Zavid Parvez, Rafiqul Islam, Md Zahidul Islam,
- Abstract summary: In a hyperconnected environment, medical institutions are concerned with data privacy when sharing and transmitting sensitive patient information.
A collaborative learning framework, including transfer, federated, and incremental learning, can generate efficient, secure, and scalable models.
This study aims to address the detection of COVID-19 using chest X-ray images through a proposed collaborative learning framework called CL3.
- Score: 1.223961905359498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a hyperconnected environment, medical institutions are particularly concerned with data privacy when sharing and transmitting sensitive patient information due to the risk of data breaches, where malicious actors could intercept sensitive information. A collaborative learning framework, including transfer, federated, and incremental learning, can generate efficient, secure, and scalable models while requiring less computation, maintaining patient data privacy, and ensuring an up-to-date model. This study aims to address the detection of COVID-19 using chest X-ray images through a proposed collaborative learning framework called CL3. Initially, transfer learning is employed, leveraging knowledge from a pre-trained model as the starting global model. Local models from different medical institutes are then integrated, and a new global model is constructed to adapt to any data drift observed in the local models. Additionally, incremental learning is considered, allowing continuous adaptation to new medical data without forgetting previously learned information. Experimental results demonstrate that the CL3 framework achieved a global accuracy of 89.99% when using Xception with a batch size of 16 after being trained for six federated communication rounds. A demo of the CL3 framework is available at https://github.com/zavidparvez/CL3-Collaborative-Approach to ensure reproducibility.
Related papers
- Dealing With Heterogeneous 3D MR Knee Images: A Federated Few-Shot
Learning Method With Dual Knowledge Distillation [39.40515099843844]
Federated learning enables training between clients without aggregating data.
Clinical institutions do not have enough supervised data for training locally.
Large institutions have the resources to compile data repositories with high-resolution images and labels.
arXiv Detail & Related papers (2023-03-25T04:46:25Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
We propose Non-Parametric learning by Compression with Latent Variables (NPC-LV)
NPC-LV is a learning framework for any dataset with abundant unlabeled data but very few labeled ones.
We show that NPC-LV outperforms supervised methods on all three datasets on image classification in low data regime.
arXiv Detail & Related papers (2022-06-23T09:35:03Z) - Federated Contrastive Learning for Volumetric Medical Image Segmentation [16.3860181959878]
Federated learning (FL) can help in this regard by learning a shared model while keeping training data local for privacy.
Traditional FL requires fully-labeled data for training, which is inconvenient or sometimes infeasible to obtain.
In this work, we propose an FCL framework for volumetric medical image segmentation with limited annotations.
arXiv Detail & Related papers (2022-04-23T03:47:23Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Memory-aware curriculum federated learning for breast cancer
classification [2.244916866651468]
For early breast cancer detection, regular screening mammography imaging is recommended.
A potential solution to such class-imbalance is joining forces across multiple institutions.
Recently, federated learning has emerged as an effective tool for collaborative learning.
arXiv Detail & Related papers (2021-07-06T09:50:20Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Blockchain-Federated-Learning and Deep Learning Models for COVID-19
detection using CT Imaging [8.280858576611587]
Primary problem in diagnosing COVID-19 patients is the shortage and reliability of testing kits.
Second real-world problem is to share the data among the hospitals globally.
Thirdly, we design a method that can collaboratively train a global model using blockchain technology.
arXiv Detail & Related papers (2020-07-10T11:23:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.