Understanding Spatio-Temporal Relations in Human-Object Interaction using Pyramid Graph Convolutional Network
- URL: http://arxiv.org/abs/2410.07912v1
- Date: Thu, 10 Oct 2024 13:39:17 GMT
- Title: Understanding Spatio-Temporal Relations in Human-Object Interaction using Pyramid Graph Convolutional Network
- Authors: Hao Xing, Darius Burschka,
- Abstract summary: We propose a novel Pyramid Graph Convolutional Network (PGCN) to automatically recognize human-object interaction.
The system represents the 2D or 3D spatial relation of human and objects from the detection results in video data as a graph.
We evaluate our model on two challenging datasets in the field of human-object interaction recognition.
- Score: 2.223052975765005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human activities recognition is an important task for an intelligent robot, especially in the field of human-robot collaboration, it requires not only the label of sub-activities but also the temporal structure of the activity. In order to automatically recognize both the label and the temporal structure in sequence of human-object interaction, we propose a novel Pyramid Graph Convolutional Network (PGCN), which employs a pyramidal encoder-decoder architecture consisting of an attention based graph convolution network and a temporal pyramid pooling module for downsampling and upsampling interaction sequence on the temporal axis, respectively. The system represents the 2D or 3D spatial relation of human and objects from the detection results in video data as a graph. To learn the human-object relations, a new attention graph convolutional network is trained to extract condensed information from the graph representation. To segment action into sub-actions, a novel temporal pyramid pooling module is proposed, which upsamples compressed features back to the original time scale and classifies actions per frame. We explore various attention layers, namely spatial attention, temporal attention and channel attention, and combine different upsampling decoders to test the performance on action recognition and segmentation. We evaluate our model on two challenging datasets in the field of human-object interaction recognition, i.e. Bimanual Actions and IKEA Assembly datasets. We demonstrate that our classifier significantly improves both framewise action recognition and segmentation, e.g., F1 micro and F1@50 scores on Bimanual Actions dataset are improved by $4.3\%$ and $8.5\%$ respectively.
Related papers
- Towards a Unified Transformer-based Framework for Scene Graph Generation
and Human-object Interaction Detection [116.21529970404653]
We introduce SG2HOI+, a unified one-step model based on the Transformer architecture.
Our approach employs two interactive hierarchical Transformers to seamlessly unify the tasks of SGG and HOI detection.
Our approach achieves competitive performance when compared to state-of-the-art HOI methods.
arXiv Detail & Related papers (2023-11-03T07:25:57Z) - IGFormer: Interaction Graph Transformer for Skeleton-based Human
Interaction Recognition [26.05948629634753]
We propose a novel Interaction Graph Transformer (IGFormer) network for skeleton-based interaction recognition.
IGFormer constructs interaction graphs according to the semantic and distance correlations between the interactive body parts.
We also propose a Semantic Partition Module to transform each human skeleton sequence into a Body-Part-Time sequence.
arXiv Detail & Related papers (2022-07-25T12:11:15Z) - Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network [3.261599248682793]
We propose a new adaptive spatial attention layer that extends local attention map to global based on relative distance and relative angle information.
We design a new initial graph adjacency matrix that connects head, hands and feet, which shows visible improvement in terms of action recognition accuracy.
The proposed model is evaluated on two large-scale and challenging datasets in the field of human activities in daily life.
arXiv Detail & Related papers (2022-07-12T12:22:21Z) - A Skeleton-aware Graph Convolutional Network for Human-Object
Interaction Detection [14.900704382194013]
We propose a skeleton-aware graph convolutional network for human-object interaction detection, named SGCN4HOI.
Our network exploits the spatial connections between human keypoints and object keypoints to capture their fine-grained structural interactions via graph convolutions.
It fuses such geometric features with visual features and spatial configuration features obtained from human-object pairs.
arXiv Detail & Related papers (2022-07-11T15:20:18Z) - Spatial Parsing and Dynamic Temporal Pooling networks for Human-Object
Interaction detection [30.896749712316222]
This paper introduces the Spatial Parsing and Dynamic Temporal Pooling (SPDTP) network, which takes the entire video as atemporal graph with human and object nodes as input.
We achieve state-of-the-art performance on CAD-120 and Something-Else dataset.
arXiv Detail & Related papers (2022-06-07T07:26:06Z) - HighlightMe: Detecting Highlights from Human-Centric Videos [52.84233165201391]
We present a domain- and user-preference-agnostic approach to detect highlightable excerpts from human-centric videos.
We use an autoencoder network equipped with spatial-temporal graph convolutions to detect human activities and interactions.
We observe a 4-12% improvement in the mean average precision of matching the human-annotated highlights over state-of-the-art methods.
arXiv Detail & Related papers (2021-10-05T01:18:15Z) - Spatio-Temporal Interaction Graph Parsing Networks for Human-Object
Interaction Recognition [55.7731053128204]
In given video-based Human-Object Interaction scene, modeling thetemporal relationship between humans and objects are the important cue to understand the contextual information presented in the video.
With the effective-temporal relationship modeling, it is possible not only to uncover contextual information in each frame but also directly capture inter-time dependencies.
The full use of appearance features, spatial location and the semantic information are also the key to improve the video-based Human-Object Interaction recognition performance.
arXiv Detail & Related papers (2021-08-19T11:57:27Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
We tackle the challenging problem of human-object interaction (HOI) detection.
Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features.
In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph.
arXiv Detail & Related papers (2020-08-26T17:59:40Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.