Time Can Invalidate Algorithmic Recourse
- URL: http://arxiv.org/abs/2410.08007v2
- Date: Fri, 24 Jan 2025 13:43:18 GMT
- Title: Time Can Invalidate Algorithmic Recourse
- Authors: Giovanni De Toni, Stefano Teso, Bruno Lepri, Andrea Passerini,
- Abstract summary: We study the robustness of algorithmic recourse over time by casting the problem through the lens of causality.<n>We demonstrate theoretically and empirically that (even robust) causal AR methods can fail over time except in the -- unlikely -- case that the world is stationary.<n>We propose a simple yet effective algorithm for temporal AR that explicitly accounts for time under the assumption of having access to an estimator.
- Score: 20.78332455864586
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Algorithmic Recourse (AR) aims to provide users with actionable steps to overturn unfavourable decisions made by machine learning predictors. However, these actions often take time to implement (e.g., getting a degree can take years), and their effects may vary as the world evolves. Thus, it is natural to ask for recourse that remains valid in a dynamic environment. In this paper, we study the robustness of algorithmic recourse over time by casting the problem through the lens of causality. We demonstrate theoretically and empirically that (even robust) causal AR methods can fail over time except in the -- unlikely -- case that the world is stationary. Even more critically, unless the world is fully deterministic, counterfactual AR cannot be solved optimally. To account for this, we propose a simple yet effective algorithm for temporal AR that explicitly accounts for time under the assumption of having access to an estimator approximating the stochastic process. Our simulations on synthetic and realistic datasets show how considering time produces more resilient solutions to potential trends in the data distribution.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Prospective Learning: Learning for a Dynamic Future [30.449933525877537]
In real-world applications, the distribution of the data, and our goals evolve over time.
Existing strategies to address the dynamic nature of data and goals exhibit poor real-world performance.
"Prospective Learning" is tailored for situations when the optimal hypothesis changes over time.
arXiv Detail & Related papers (2024-10-31T18:03:17Z) - Perfect Counterfactuals in Imperfect Worlds: Modelling Noisy Implementation of Actions in Sequential Algorithmic Recourse [26.57812122315108]
Algorithmic recourse provides actions to individuals who have been adversely affected by automated decision-making.
Knowing the recourse does not guarantee that users would implement it perfectly, either due to environmental variability or personal choices.
We propose the RObust SEquential (ROSE) recourse generator to output a sequence of steps that will lead to the desired outcome even under imperfect implementation.
arXiv Detail & Related papers (2024-10-03T07:47:42Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
We propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE.
Our algorithm can be seen as a form of soft early exiting or input-dependent compression.
The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation.
arXiv Detail & Related papers (2024-06-20T15:25:13Z) - Relevance-aware Algorithmic Recourse [3.6141428739228894]
Algorithmic recourse emerges as a tool for clarifying decisions made by predictive models.
Current algorithmic recourse methods treat all domain values equally, which is unrealistic in real-world settings.
We propose a novel framework, Relevance-Aware Algorithmic Recourse (RAAR), that leverages the concept of relevance in applying algorithmic recourse to regression tasks.
arXiv Detail & Related papers (2024-05-29T13:25:49Z) - Successive Refinement in Large-Scale Computation: Advancing Model
Inference Applications [67.76749044675721]
We introduce solutions for layered-resolution computation.
These solutions allow lower-resolution results to be obtained at an earlier stage than the final result.
arXiv Detail & Related papers (2024-02-11T15:36:33Z) - An Investigation of Time Reversal Symmetry in Reinforcement Learning [18.375784421726287]
We formalize a concept of time reversal symmetry in a Markov decision process (MDP)
We observe that utilizing the structure of time reversal in an MDP allows every environment transition experienced by an agent to be transformed into a feasible reverse-time transition.
To test the usefulness of this newly synthesized data, we develop a novel approach called time symmetric data augmentation (TSDA)
arXiv Detail & Related papers (2023-11-28T18:02:06Z) - Endogenous Macrodynamics in Algorithmic Recourse [52.87956177581998]
Existing work on Counterfactual Explanations (CE) and Algorithmic Recourse (AR) has largely focused on single individuals in a static environment.
We show that many of the existing methodologies can be collectively described by a generalized framework.
We then argue that the existing framework does not account for a hidden external cost of recourse, that only reveals itself when studying the endogenous dynamics of recourse at the group level.
arXiv Detail & Related papers (2023-08-16T07:36:58Z) - ReLU Regression with Massart Noise [52.10842036932169]
We study the fundamental problem of ReLU regression, where the goal is to fit Rectified Linear Units (ReLUs) to data.
We focus on ReLU regression in the Massart noise model, a natural and well-studied semi-random noise model.
We develop an efficient algorithm that achieves exact parameter recovery in this model.
arXiv Detail & Related papers (2021-09-10T02:13:22Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Reinforcement Learning with Algorithms from Probabilistic Structure
Estimation [9.37335587960084]
Reinforcement learning algorithms aim to learn optimal decisions in unknown environments.
It is unknown from the outset whether or not the agent's actions will impact the environment.
It is often not possible to determine which RL algorithm is most fitting.
arXiv Detail & Related papers (2021-03-15T09:51:34Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
In some scenarios such as healthcare, usually only few records are available for each patient, impeding the application of currentReinforcement learning algorithms.
We propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics.
We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function.
arXiv Detail & Related papers (2020-12-16T17:21:13Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
Reinforcement learning algorithms update an agent's parameters according to one of several possible rules.
This paper introduces a new meta-learning approach that discovers an entire update rule.
It includes both 'what to predict' (e.g. value functions) and 'how to learn from it' by interacting with a set of environments.
arXiv Detail & Related papers (2020-07-17T07:38:39Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
We show that an off-policy RL algorithm can reason about and tackle lifelong non-stationarity.
Our method leverages latent variable models to learn a representation of the environment from current and past experiences.
We also introduce several simulation environments that exhibit lifelong non-stationarity, and empirically find that our approach substantially outperforms approaches that do not reason about environment shift.
arXiv Detail & Related papers (2020-06-18T17:34:50Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
We present a policy gradient algorithm that maximizes a forecast of future performance.
We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques.
arXiv Detail & Related papers (2020-05-17T03:41:19Z) - ReRe: A Lightweight Real-time Ready-to-Go Anomaly Detection Approach for
Time Series [0.27528170226206433]
This paper introduces ReRe, a Real-time Ready-to-go proactive Anomaly Detection algorithm for streaming time series.
ReRe employs two lightweight Long Short-Term Memory (LSTM) models to predict and jointly determine whether or not an upcoming data point is anomalous.
Experiments based on real-world time-series datasets demonstrate the good performance of ReRe in real-time anomaly detection.
arXiv Detail & Related papers (2020-04-05T21:26:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.