Non-transferable Pruning
- URL: http://arxiv.org/abs/2410.08015v1
- Date: Thu, 10 Oct 2024 15:10:09 GMT
- Title: Non-transferable Pruning
- Authors: Ruyi Ding, Lili Su, Aidong Adam Ding, Yunsi Fei,
- Abstract summary: Pretrained Deep Neural Networks (DNNs) are increasingly recognized as valuable intellectual property (IP)
To safeguard these models against IP infringement, strategies for ownership verification and usage authorization have emerged.
We propose Non-Transferable Pruning (NTP), a novel IP protection method that leverages model pruning to control a pretrained DNN's transferability to unauthorized data domains.
- Score: 5.690414273625171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained Deep Neural Networks (DNNs), developed from extensive datasets to integrate multifaceted knowledge, are increasingly recognized as valuable intellectual property (IP). To safeguard these models against IP infringement, strategies for ownership verification and usage authorization have emerged. Unlike most existing IP protection strategies that concentrate on restricting direct access to the model, our study addresses an extended DNN IP issue: applicability authorization, aiming to prevent the misuse of learned knowledge, particularly in unauthorized transfer learning scenarios. We propose Non-Transferable Pruning (NTP), a novel IP protection method that leverages model pruning to control a pretrained DNN's transferability to unauthorized data domains. Selective pruning can deliberately diminish a model's suitability on unauthorized domains, even with full fine-tuning. Specifically, our framework employs the alternating direction method of multipliers (ADMM) for optimizing both the model sparsity and an innovative non-transferable learning loss, augmented with Fisher space discriminative regularization, to constrain the model's generalizability to the target dataset. We also propose a novel effective metric to measure the model non-transferability: Area Under the Sample-wise Learning Curve (SLC-AUC). This metric facilitates consideration of full fine-tuning across various sample sizes. Experimental results demonstrate that NTP significantly surpasses the state-of-the-art non-transferable learning methods, with an average SLC-AUC at $-0.54$ across diverse pairs of source and target domains, indicating that models trained with NTP do not suit for transfer learning to unauthorized target domains. The efficacy of NTP is validated in both supervised and self-supervised learning contexts, confirming its applicability in real-world scenarios.
Related papers
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - MAP: MAsk-Pruning for Source-Free Model Intellectual Property Protection [18.99205251538783]
MAsk Pruning (MAP) is a framework for locating and pruning target-related parameters in a well-trained model.
MAP freezes the source model and learns a target-specific binary mask to prevent unauthorized data usage.
Extensive experiments indicate that MAP yields new state-of-the-art performance.
arXiv Detail & Related papers (2024-03-07T02:10:59Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Unsupervised Non-transferable Text Classification [8.077841946617472]
We propose a novel unsupervised non-transferable learning method for the text classification task.
We introduce a secret key component in our approach for recovering the access to the target domain.
arXiv Detail & Related papers (2022-10-23T08:15:43Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Universal Source-Free Domain Adaptation [57.37520645827318]
We propose a novel two-stage learning process for domain adaptation.
In the Procurement stage, we aim to equip the model for future source-free deployment, assuming no prior knowledge of the upcoming category-gap and domain-shift.
In the Deployment stage, the goal is to design a unified adaptation algorithm capable of operating across a wide range of category-gaps.
arXiv Detail & Related papers (2020-04-09T07:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.