DelTA: An Online Document-Level Translation Agent Based on Multi-Level Memory
- URL: http://arxiv.org/abs/2410.08143v1
- Date: Thu, 10 Oct 2024 17:30:09 GMT
- Title: DelTA: An Online Document-Level Translation Agent Based on Multi-Level Memory
- Authors: Yutong Wang, Jiali Zeng, Xuebo Liu, Derek F. Wong, Fandong Meng, Jie Zhou, Min Zhang,
- Abstract summary: We introduce DelTA, a Document-levEL Translation Agent for large language models (LLMs)
DelTA features a multi-level memory structure that stores information across various granularities and spans.
Experimental results indicate that DelTA significantly outperforms strong baselines in terms of translation consistency and quality.
- Score: 96.35468670508476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved reasonable quality improvements in machine translation (MT). However, most current research on MT-LLMs still faces significant challenges in maintaining translation consistency and accuracy when processing entire documents. In this paper, we introduce DelTA, a Document-levEL Translation Agent designed to overcome these limitations. DelTA features a multi-level memory structure that stores information across various granularities and spans, including Proper Noun Records, Bilingual Summary, Long-Term Memory, and Short-Term Memory, which are continuously retrieved and updated by auxiliary LLM-based components. Experimental results indicate that DelTA significantly outperforms strong baselines in terms of translation consistency and quality across four open/closed-source LLMs and two representative document translation datasets, achieving an increase in consistency scores by up to 4.58 percentage points and in COMET scores by up to 3.16 points on average. DelTA employs a sentence-by-sentence translation strategy, ensuring no sentence omissions and offering a memory-efficient solution compared to the mainstream method. Furthermore, DelTA improves pronoun translation accuracy, and the summary component of the agent also shows promise as a tool for query-based summarization tasks. We release our code and data at https://github.com/YutongWang1216/DocMTAgent.
Related papers
- Doc-Guided Sent2Sent++: A Sent2Sent++ Agent with Doc-Guided memory for Document-level Machine Translation [11.36816954288264]
This paper introduces Doc-Guided Sent2Sent++, an Agent that employs an incremental sentence-level forced decoding strategy.
We demonstrate that Sent2Sent++ outperforms other methods in terms of quality, consistency, and fluency.
arXiv Detail & Related papers (2025-01-15T02:25:35Z) - Retrieval-Augmented Machine Translation with Unstructured Knowledge [74.84236945680503]
Retrieval-augmented generation (RAG) introduces additional information to enhance large language models (LLMs)
In machine translation (MT), previous work typically retrieves in-context examples from paired MT corpora, or domain-specific knowledge from knowledge graphs.
In this paper, we study retrieval-augmented MT using unstructured documents.
arXiv Detail & Related papers (2024-12-05T17:00:32Z) - Context-Aware or Context-Insensitive? Assessing LLMs' Performance in Document-Level Translation [10.174848090916669]
Large language models (LLMs) are increasingly strong contenders in machine translation.
We focus on document-level translation, where some words cannot be translated without context from outside the sentence.
arXiv Detail & Related papers (2024-10-18T11:52:10Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
We propose a novel Iterative Bilingual Understanding Translation method based on the cross-lingual capabilities of large language models (LLMs)
The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately.
The proposed IBUT outperforms several strong comparison methods.
arXiv Detail & Related papers (2024-10-16T13:21:46Z) - LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation [67.24113079928668]
We present LexMatcher, a method for data curation driven by the coverage of senses found in bilingual dictionaries.
Our approach outperforms the established baselines on the WMT2022 test sets.
arXiv Detail & Related papers (2024-06-03T15:30:36Z) - (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts [52.18246881218829]
We introduce a novel multi-agent framework based on large language models (LLMs) for literary translation, implemented as a company called TransAgents.
To evaluate the effectiveness of our system, we propose two innovative evaluation strategies: Monolingual Human Preference (MHP) and Bilingual LLM Preference (BLP)
arXiv Detail & Related papers (2024-05-20T05:55:08Z) - Soft Prompt Decoding for Multilingual Dense Retrieval [30.766917713997355]
We show that applying state-of-the-art approaches developed for cross-lingual information retrieval to MLIR tasks leads to sub-optimal performance.
This is due to the heterogeneous and imbalanced nature of multilingual collections.
We present KD-SPD, a novel soft prompt decoding approach for MLIR that implicitly "translates" the representation of documents in different languages into the same embedding space.
arXiv Detail & Related papers (2023-05-15T21:17:17Z) - Understanding Translationese in Cross-Lingual Summarization [106.69566000567598]
Cross-lingual summarization (MS) aims at generating a concise summary in a different target language.
To collect large-scale CLS data, existing datasets typically involve translation in their creation.
In this paper, we first confirm that different approaches of constructing CLS datasets will lead to different degrees of translationese.
arXiv Detail & Related papers (2022-12-14T13:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.