Correspondence of NNGP Kernel and the Matern Kernel
- URL: http://arxiv.org/abs/2410.08311v1
- Date: Thu, 10 Oct 2024 19:00:05 GMT
- Title: Correspondence of NNGP Kernel and the Matern Kernel
- Authors: Amanda Muyskens, Benjamin W. Priest, Imene R. Goumiri, Michael D. Schneider,
- Abstract summary: We take a practical approach to explore the neural network Gaussian process (NNGP) kernel and its application to data in Gaussian process regression.
We demonstrate the necessity of normalization to produce valid NNGP kernels and explore related numerical challenges.
We then demonstrate a surprising result that the predictions given from the NNGP kernel correspond closely to those given by the Matern kernel under specific circumstances.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kernels representing limiting cases of neural network architectures have recently gained popularity. However, the application and performance of these new kernels compared to existing options, such as the Matern kernel, is not well studied. We take a practical approach to explore the neural network Gaussian process (NNGP) kernel and its application to data in Gaussian process regression. We first demonstrate the necessity of normalization to produce valid NNGP kernels and explore related numerical challenges. We further demonstrate that the predictions from this model are quite inflexible, and therefore do not vary much over the valid hyperparameter sets. We then demonstrate a surprising result that the predictions given from the NNGP kernel correspond closely to those given by the Matern kernel under specific circumstances, which suggests a deep similarity between overparameterized deep neural networks and the Matern kernel. Finally, we demonstrate the performance of the NNGP kernel as compared to the Matern kernel on three benchmark data cases, and we conclude that for its flexibility and practical performance, the Matern kernel is preferred to the novel NNGP in practical applications.
Related papers
- Matérn Kernels for Tunable Implicit Surface Reconstruction [5.8691349601057325]
Mat'ern kernels have some appealing properties which make them particularly well suited for surface reconstruction.
Being stationary, we demonstrate that the Mat'ern kernels' spectrum can be tuned in the same fashion as feature mappings.
We analyze Mat'ern's connection to SIREN networks and its relation to previously employed arc-cosine kernels.
arXiv Detail & Related papers (2024-09-23T18:45:42Z) - An Exact Kernel Equivalence for Finite Classification Models [1.4777718769290527]
We compare our exact representation to the well-known Neural Tangent Kernel (NTK) and discuss approximation error relative to the NTK.
We use this exact kernel to show that our theoretical contribution can provide useful insights into the predictions made by neural networks.
arXiv Detail & Related papers (2023-08-01T20:22:53Z) - Sample-Then-Optimize Batch Neural Thompson Sampling [50.800944138278474]
We introduce two algorithms for black-box optimization based on the Thompson sampling (TS) policy.
To choose an input query, we only need to train an NN and then choose the query by maximizing the trained NN.
Our algorithms sidestep the need to invert the large parameter matrix yet still preserve the validity of the TS policy.
arXiv Detail & Related papers (2022-10-13T09:01:58Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Incorporating Prior Knowledge into Neural Networks through an Implicit
Composite Kernel [1.6383321867266318]
Implicit Composite Kernel (ICK) is a kernel that combines a kernel implicitly defined by a neural network with a second kernel function chosen to model known properties.
We demonstrate ICK's superior performance and flexibility on both synthetic and real-world data sets.
arXiv Detail & Related papers (2022-05-15T21:32:44Z) - Uniform Generalization Bounds for Overparameterized Neural Networks [5.945320097465419]
We prove uniform generalization bounds for overparameterized neural networks in kernel regimes.
Our bounds capture the exact error rates depending on the differentiability of the activation functions.
We show the equivalence between the RKHS corresponding to the NT kernel and its counterpart corresponding to the Mat'ern family of kernels.
arXiv Detail & Related papers (2021-09-13T16:20:13Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks [61.07202852469595]
We present Neural Splines, a technique for 3D surface reconstruction that is based on random feature kernels arising from infinitely-wide shallow ReLU networks.
Our method achieves state-of-the-art results, outperforming recent neural network-based techniques and widely used Poisson Surface Reconstruction.
arXiv Detail & Related papers (2020-06-24T14:54:59Z) - Reinforcement Learning via Gaussian Processes with Neural Network Dual
Kernels [0.0]
We show that neural network dual kernels can be efficiently applied to regression and reinforcement learning problems.
We demonstrate, using the well-understood mountain-car problem, that GPs empowered with dual kernels perform at least as well as those using the conventional radial basis function kernel.
arXiv Detail & Related papers (2020-04-10T18:36:21Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.