Promptly Yours? A Human Subject Study on Prompt Inference in AI-Generated Art
- URL: http://arxiv.org/abs/2410.08406v1
- Date: Thu, 10 Oct 2024 22:41:13 GMT
- Title: Promptly Yours? A Human Subject Study on Prompt Inference in AI-Generated Art
- Authors: Khoi Trinh, Joseph Spracklen, Raveen Wijewickrama, Bimal Viswanath, Murtuza Jadliwala, Anindya Maiti,
- Abstract summary: This paper investigates whether concealed prompts sold on prompt marketplaces can be considered as secure intellectual property.
Humans and AI tools may be able to approximately infer the prompts based on publicly advertised sample images.
Our findings indicate that while humans and human-AI collaborations can infer prompts and generate similar images with high accuracy, they are not as successful as using the original prompt.
- Score: 3.2727589223804507
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emerging field of AI-generated art has witnessed the rise of prompt marketplaces, where creators can purchase, sell, or share prompts for generating unique artworks. These marketplaces often assert ownership over prompts, claiming them as intellectual property. This paper investigates whether concealed prompts sold on prompt marketplaces can be considered as secure intellectual property, given that humans and AI tools may be able to approximately infer the prompts based on publicly advertised sample images accompanying each prompt on sale. Specifically, our survey aims to assess (i) how accurately can humans infer the original prompt solely by examining an AI-generated image, with the goal of generating images similar to the original image, and (ii) the possibility of improving upon individual human and AI prompt inferences by crafting human-AI combined prompts with the help of a large language model. Although previous research has explored the use of AI and machine learning to infer (and also protect against) prompt inference, we are the first to include humans in the loop. Our findings indicate that while humans and human-AI collaborations can infer prompts and generate similar images with high accuracy, they are not as successful as using the original prompt.
Related papers
- Laypeople's Egocentric Perceptions of Copyright for AI-Generated Art [3.072340427031969]
This research investigates perceptions of AI-generated art concerning factors associated with copyright protection.
We find that participants are most likely to attribute authorship and copyright over AI-generated images to the users who prompted the system to generate the image.
Our results suggest that people judge their own AI-generated art more favorably with respect to some factors (creativity and effort) but not others (skills)
arXiv Detail & Related papers (2024-07-15T08:53:43Z) - Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
We first establish a novel Image Quality Assessment (IQA) database for AIGIs, termed AIGCIQA2023+.
This paper presents a MINT-IQA model to evaluate and explain human preferences for AIGIs from Multi-perspectives with INstruction Tuning.
arXiv Detail & Related papers (2024-05-12T17:45:11Z) - Can AI Outperform Human Experts in Creating Social Media Creatives? [0.6963971634605797]
This paper evaluates AI's capability in the creative domain compared to human experts.
We propose a novel Prompt-for-Prompt to generate social media creatives via prompt augmentation by Large Language Models.
We find that AI excels human experts, and Midjourney is better than the other text-to-image generators.
arXiv Detail & Related papers (2024-03-19T07:41:45Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - The role of interface design on prompt-mediated creativity in Generative
AI [0.0]
We analyze more than 145,000 prompts from two Generative AI platforms.
We find that users exhibit a tendency towards exploration of new topics over exploitation of concepts visited previously.
arXiv Detail & Related papers (2023-11-30T22:33:34Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - A Portrait of Emotion: Empowering Self-Expression through AI-Generated
Art [0.0]
We investigated the potential and limitations of generative artificial intelligence (AI) in reflecting the authors' cognitive processes through creative expression.
Results show a preference for images based on the descriptions of the authors' emotions over the main events.
Our research framework with generative AIs can help design AI-based interventions in related fields.
arXiv Detail & Related papers (2023-04-26T06:54:53Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
There is a growing concern that the advancement of artificial intelligence (AI) technology may produce fake photos.
This study aims to comprehensively evaluate agents for distinguishing state-of-the-art AI-generated visual content.
arXiv Detail & Related papers (2023-04-25T17:51:59Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Human Evaluation of Interpretability: The Case of AI-Generated Music
Knowledge [19.508678969335882]
We focus on evaluating AI-discovered knowledge/rules in the arts and humanities.
We present an experimental procedure to collect and assess human-generated verbal interpretations of AI-generated music theory/rules rendered as sophisticated symbolic/numeric objects.
arXiv Detail & Related papers (2020-04-15T06:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.