oRetrieval Augmented Generation for 10 Large Language Models and its Generalizability in Assessing Medical Fitness
- URL: http://arxiv.org/abs/2410.08431v1
- Date: Fri, 11 Oct 2024 00:34:20 GMT
- Title: oRetrieval Augmented Generation for 10 Large Language Models and its Generalizability in Assessing Medical Fitness
- Authors: Yu He Ke, Liyuan Jin, Kabilan Elangovan, Hairil Rizal Abdullah, Nan Liu, Alex Tiong Heng Sia, Chai Rick Soh, Joshua Yi Min Tung, Jasmine Chiat Ling Ong, Chang-Fu Kuo, Shao-Chun Wu, Vesela P. Kovacheva, Daniel Shu Wei Ting,
- Abstract summary: Large Language Models (LLMs) show potential for medical applications but often lack specialized clinical knowledge.
Retrieval Augmented Generation (RAG) allows customization with domain-specific information, making it suitable for healthcare.
This study evaluates the accuracy, consistency, and safety of RAG models in determining fitness for surgery and providing preoperative instructions.
- Score: 4.118721833273984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) show potential for medical applications but often lack specialized clinical knowledge. Retrieval Augmented Generation (RAG) allows customization with domain-specific information, making it suitable for healthcare. This study evaluates the accuracy, consistency, and safety of RAG models in determining fitness for surgery and providing preoperative instructions. We developed LLM-RAG models using 35 local and 23 international preoperative guidelines and tested them against human-generated responses. A total of 3,682 responses were evaluated. Clinical documents were processed using Llamaindex, and 10 LLMs, including GPT3.5, GPT4, and Claude-3, were assessed. Fourteen clinical scenarios were analyzed, focusing on seven aspects of preoperative instructions. Established guidelines and expert judgment were used to determine correct responses, with human-generated answers serving as comparisons. The LLM-RAG models generated responses within 20 seconds, significantly faster than clinicians (10 minutes). The GPT4 LLM-RAG model achieved the highest accuracy (96.4% vs. 86.6%, p=0.016), with no hallucinations and producing correct instructions comparable to clinicians. Results were consistent across both local and international guidelines. This study demonstrates the potential of LLM-RAG models for preoperative healthcare tasks, highlighting their efficiency, scalability, and reliability.
Related papers
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - Evaluating the Impact of a Specialized LLM on Physician Experience in Clinical Decision Support: A Comparison of Ask Avo and ChatGPT-4 [0.3999851878220878]
Large language models (LLMs) to augment clinical decision support systems is a topic with growing interest.
Current shortcomings such as hallucinations and lack of clear source citations make them unreliable for use in rapidly growing clinical environment.
This study evaluates Ask Avo-derived software by AvoMD that incorporates a proprietary Model Augmented Language Retrieval system.
arXiv Detail & Related papers (2024-09-06T17:53:29Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - Benchmarking Retrieval-Augmented Generation for Medicine [30.390132015614128]
Large language models (LLMs) have achieved state-of-the-art performance on a wide range of medical question answering (QA) tasks.
Retrieval-augmented generation (RAG) is a promising solution and has been widely adopted.
We propose the Medical Information Retrieval-Augmented Generation Evaluation (MIRAGE), a first-of-its-kind benchmark including 7,663 questions from five medical QA datasets.
arXiv Detail & Related papers (2024-02-20T17:44:06Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - Development and Testing of Retrieval Augmented Generation in Large
Language Models -- A Case Study Report [2.523433459887027]
Retrieval Augmented Generation (RAG) emerges as a promising approach for customizing domain knowledge in Large Language Models (LLMs)
We developed an LLM-RAG model using 35 preoperative guidelines and tested it against human-generated responses.
The model generated answers within an average of 15-20 seconds, significantly faster than the 10 minutes typically required by humans.
arXiv Detail & Related papers (2024-01-29T06:49:53Z) - Qilin-Med: Multi-stage Knowledge Injection Advanced Medical Large Language Model [41.11769935795965]
We present a multi-stage training method combining Domain-specific Continued Pre-training (DCPT), Supervised Fine-tuning (SFT), and Direct Preference Optimization (DPO)
In the CPT and SFT phases, Qilin-Med achieved 38.4% and 40.0% accuracy on the CMExam test set, respectively.
In the DPO phase, it scored 16.66 in BLEU-1 and 27.44 in ROUGE-1 on the Huatuo-26M test set, bringing further improvement to the SFT phase (12.69 in BLEU-1 and 24.21 in ROUGE-1)
arXiv Detail & Related papers (2023-10-13T13:17:03Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z) - Improving accuracy of GPT-3/4 results on biomedical data using a
retrieval-augmented language model [0.0]
Large language models (LLMs) have made significant advancements in natural language processing (NLP)
Training LLMs on focused corpora poses computational challenges.
An alternative approach is to use a retrieval-augmentation (RetA) method tested in a specific domain.
OpenAI's GPT-3, GPT-4, Bing's Prometheus, and a custom RetA model were compared using 19 questions on diffuse large B-cell lymphoma (DLBCL) disease.
arXiv Detail & Related papers (2023-05-26T17:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.