A Systematic Review of Edge Case Detection in Automated Driving: Methods, Challenges and Future Directions
- URL: http://arxiv.org/abs/2410.08491v1
- Date: Fri, 11 Oct 2024 03:32:20 GMT
- Title: A Systematic Review of Edge Case Detection in Automated Driving: Methods, Challenges and Future Directions
- Authors: Saeed Rahmani, Sabine Rieder, Erwin de Gelder, Marcel Sonntag, Jorge Lorente Mallada, Sytze Kalisvaart, Vahid Hashemi, Simeon C. Calvert,
- Abstract summary: This paper presents a practical, hierarchical review and systematic classification of edge case detection and assessment methodologies.
Our classification is structured on two levels: first, categorizing detection approaches according to AV modules, including perception-related and trajectory-related edge cases.
We introduce a new class called "knowledge-driven" approaches, which is largely overlooked in the literature.
- Score: 0.3871780652193725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of automated vehicles (AVs) promises to revolutionize transportation by enhancing safety and efficiency. However, ensuring their reliability in diverse real-world conditions remains a significant challenge, particularly due to rare and unexpected situations known as edge cases. Although numerous approaches exist for detecting edge cases, there is a notable lack of a comprehensive survey that systematically reviews these techniques. This paper fills this gap by presenting a practical, hierarchical review and systematic classification of edge case detection and assessment methodologies. Our classification is structured on two levels: first, categorizing detection approaches according to AV modules, including perception-related and trajectory-related edge cases; and second, based on underlying methodologies and theories guiding these techniques. We extend this taxonomy by introducing a new class called "knowledge-driven" approaches, which is largely overlooked in the literature. Additionally, we review the techniques and metrics for the evaluation of edge case detection methods and identified edge cases. To our knowledge, this is the first survey to comprehensively cover edge case detection methods across all AV subsystems, discuss knowledge-driven edge cases, and explore evaluation techniques for detection methods. This structured and multi-faceted analysis aims to facilitate targeted research and modular testing of AVs. Moreover, by identifying the strengths and weaknesses of various approaches and discussing the challenges and future directions, this survey intends to assist AV developers, researchers, and policymakers in enhancing the safety and reliability of automated driving (AD) systems through effective edge case detection.
Related papers
- Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks [17.520137576423593]
We aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR)
We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them.
We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR.
arXiv Detail & Related papers (2024-08-29T17:55:07Z) - Occlusion-Aware 2D and 3D Centerline Detection for Urban Driving via
Automatic Label Generation [4.921246328739616]
This research work seeks to explore and identify strategies that can determine road topology information in 2D and 3D under highly dynamic urban driving scenarios.
To facilitate this exploration, we introduce a substantial dataset comprising nearly one million automatically labeled data frames.
arXiv Detail & Related papers (2023-11-03T17:20:34Z) - Applying Security Testing Techniques to Automotive Engineering [4.2755847332268235]
Security regression testing ensures that changes made to a system do not harm its security.
We present a systematic classification of available security regression testing approaches.
arXiv Detail & Related papers (2023-09-18T10:32:36Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
It has been found that deep learning models are vulnerable to data instances that can mislead the model to make incorrect classification decisions.
This survey explores the researches that employ different aspects of adversarial machine learning in the area of network intrusion detection.
arXiv Detail & Related papers (2021-12-06T19:10:23Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems.
Several other problems, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD) are closely related to OOD detection.
We first present a unified framework called generalized OOD detection, which encompasses the five aforementioned problems.
arXiv Detail & Related papers (2021-10-21T17:59:41Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for Deep Learning applications.
We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches.
We highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
arXiv Detail & Related papers (2020-03-16T02:47:23Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.