Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
- URL: http://arxiv.org/abs/2410.08503v1
- Date: Fri, 11 Oct 2024 03:59:49 GMT
- Title: Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
- Authors: Binghui Li, Yuanzhi Li,
- Abstract summary: We provide a theoretical understanding of adversarial examples and adversarial training algorithms from the perspective of feature learning theory.
We show that the adversarial training method can provably strengthen the robust feature learning and suppress the non-robust feature learning.
- Score: 38.44734564565478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial training is a widely-applied approach to training deep neural networks to be robust against adversarial perturbation. However, although adversarial training has achieved empirical success in practice, it still remains unclear why adversarial examples exist and how adversarial training methods improve model robustness. In this paper, we provide a theoretical understanding of adversarial examples and adversarial training algorithms from the perspective of feature learning theory. Specifically, we focus on a multiple classification setting, where the structured data can be composed of two types of features: the robust features, which are resistant to perturbation but sparse, and the non-robust features, which are susceptible to perturbation but dense. We train a two-layer smoothed ReLU convolutional neural network to learn our structured data. First, we prove that by using standard training (gradient descent over the empirical risk), the network learner primarily learns the non-robust feature rather than the robust feature, which thereby leads to the adversarial examples that are generated by perturbations aligned with negative non-robust feature directions. Then, we consider the gradient-based adversarial training algorithm, which runs gradient ascent to find adversarial examples and runs gradient descent over the empirical risk at adversarial examples to update models. We show that the adversarial training method can provably strengthen the robust feature learning and suppress the non-robust feature learning to improve the network robustness. Finally, we also empirically validate our theoretical findings with experiments on real-image datasets, including MNIST, CIFAR10 and SVHN.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
Most robust training techniques aim to improve model accuracy on perturbed inputs.
As an alternate form of robustness, we aim to reduce the severity of mistakes made by neural networks in challenging conditions.
We leverage current adversarial training methods to generate targeted adversarial attacks during the training process.
Results demonstrate that our approach performs better with respect to mistake severity compared to standard and adversarially trained models.
arXiv Detail & Related papers (2022-11-21T22:01:36Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Understanding Robust Learning through the Lens of Representation
Similarities [37.66877172364004]
robustness to adversarial examples has emerged as a desirable property for deep neural networks (DNNs)
In this paper, we aim to understand how the properties of representations learned by robust training differ from those obtained from standard, non-robust training.
arXiv Detail & Related papers (2022-06-20T16:06:20Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - On the Generalization Properties of Adversarial Training [21.79888306754263]
This paper studies the generalization performance of a generic adversarial training algorithm.
A series of numerical studies are conducted to demonstrate how the smoothness and L1 penalization help improve the adversarial robustness of models.
arXiv Detail & Related papers (2020-08-15T02:32:09Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
We show a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network.
We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly gradient descent indeed this principle.
arXiv Detail & Related papers (2020-05-20T16:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.