Developing a Pragmatic Benchmark for Assessing Korean Legal Language Understanding in Large Language Models
- URL: http://arxiv.org/abs/2410.08731v1
- Date: Fri, 11 Oct 2024 11:41:02 GMT
- Title: Developing a Pragmatic Benchmark for Assessing Korean Legal Language Understanding in Large Language Models
- Authors: Yeeun Kim, Young Rok Choi, Eunkyung Choi, Jinhwan Choi, Hai Jin Park, Wonseok Hwang,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable performance in the legal domain.
However their efficacy remains limited for non-standardized tasks and tasks in languages other than English.
This underscores the need for careful evaluation of LLMs within each legal system before application.
- Score: 7.797885529152412
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable performance in the legal domain, with GPT-4 even passing the Uniform Bar Exam in the U.S. However their efficacy remains limited for non-standardized tasks and tasks in languages other than English. This underscores the need for careful evaluation of LLMs within each legal system before application. Here, we introduce KBL, a benchmark for assessing the Korean legal language understanding of LLMs, consisting of (1) 7 legal knowledge tasks (510 examples), (2) 4 legal reasoning tasks (288 examples), and (3) the Korean bar exam (4 domains, 53 tasks, 2,510 examples). First two datasets were developed in close collaboration with lawyers to evaluate LLMs in practical scenarios in a certified manner. Furthermore, considering legal practitioners' frequent use of extensive legal documents for research, we assess LLMs in both a closed book setting, where they rely solely on internal knowledge, and a retrieval-augmented generation (RAG) setting, using a corpus of Korean statutes and precedents. The results indicate substantial room and opportunities for improvement.
Related papers
- InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - Bridging Law and Data: Augmenting Reasoning via a Semi-Structured Dataset with IRAC methodology [22.740895683854568]
This paper introduces LEGALSEMI, a benchmark specifically curated for legal scenario analysis.
LEGALSEMI comprises 54 legal scenarios, each rigorously annotated by legal experts, based on the comprehensive IRAC (Issue, Rule, Application, Conclusion) framework.
A series of experiments were conducted to assess the usefulness of LEGALSEMI for IRAC analysis.
arXiv Detail & Related papers (2024-06-19T04:59:09Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
General and legal domain LLMs have demonstrated strong performance in various tasks of LegalAI.
We are the first to build the Chinese legal LLMs benchmark LAiW, based on the logic of legal practice.
arXiv Detail & Related papers (2023-10-09T11:19:55Z) - LawBench: Benchmarking Legal Knowledge of Large Language Models [35.2812008533622]
Large language models (LLMs) have demonstrated strong capabilities in various aspects.
It is unclear how much legal knowledge they possess and whether they can reliably perform legal-related tasks.
LawBench has been meticulously crafted to have precise assessment of the LLMs' legal capabilities from three cognitive levels.
arXiv Detail & Related papers (2023-09-28T09:35:59Z) - L-Eval: Instituting Standardized Evaluation for Long Context Language
Models [91.05820785008527]
We propose L-Eval to institute a more standardized evaluation for long context language models (LCLMs)
We build a new evaluation suite containing 20 sub-tasks, 508 long documents, and over 2,000 human-labeled query-response pairs.
Results show that popular n-gram matching metrics generally can not correlate well with human judgment.
arXiv Detail & Related papers (2023-07-20T17:59:41Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
This paper explores Large Language Models' (LLMs) capabilities in applying tax law.
Our experiments demonstrate emerging legal understanding capabilities, with improved performance in each subsequent OpenAI model release.
Findings indicate that LLMs, particularly when combined with prompting enhancements and the correct legal texts, can perform at high levels of accuracy but not yet at expert tax lawyer levels.
arXiv Detail & Related papers (2023-06-12T12:40:48Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.