On the Convergence of Single-Timescale Actor-Critic
- URL: http://arxiv.org/abs/2410.08868v2
- Date: Wed, 04 Jun 2025 12:47:22 GMT
- Title: On the Convergence of Single-Timescale Actor-Critic
- Authors: Navdeep Kumar, Priyank Agrawal, Giorgia Ramponi, Kfir Yehuda Levy, Shie Mannor,
- Abstract summary: We analyze the global convergence of the single-timescale actor-critic (AC) algorithm for the infinite-horizon discounted Decision Processes (MDs) with finite state spaces.<n>We demonstrate that the step sizes for both the actor and critic must decay as ( O(k-Pfrac12) ) with $k$ diverging from the conventional ( O(k-Pfrac12) ) rates commonly used in (non- optimal) Markov framework optimization.
- Score: 49.19842488693726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the global convergence of the single-timescale actor-critic (AC) algorithm for the infinite-horizon discounted Markov Decision Processes (MDPs) with finite state spaces. To this end, we introduce an elegant analytical framework for handling complex, coupled recursions inherent in the algorithm. Leveraging this framework, we establish that the algorithm converges to an $\epsilon$-close \textbf{globally optimal} policy with a sample complexity of \( O(\epsilon^{-3}) \). This significantly improves upon the existing complexity of $O(\epsilon^{-2})$ to achieve $\epsilon$-close \textbf{stationary policy}, which is equivalent to the complexity of $O(\epsilon^{-4})$ to achieve $\epsilon$-close \textbf{globally optimal} policy using gradient domination lemma. Furthermore, we demonstrate that to achieve this improvement, the step sizes for both the actor and critic must decay as \( O(k^{-\frac{2}{3}}) \) with iteration $k$, diverging from the conventional \( O(k^{-\frac{1}{2}}) \) rates commonly used in (non)convex optimization.
Related papers
- Towards a Sharp Analysis of Offline Policy Learning for $f$-Divergence-Regularized Contextual Bandits [49.96531901205305]
We analyze $f$-divergence-regularized offline policy learning.<n>For reverse Kullback-Leibler (KL) divergence, we give the first $tildeO(epsilon-1)$ sample complexity under single-policy concentrability.<n>We extend our analysis to dueling bandits, and we believe these results take a significant step toward a comprehensive understanding of $f$-divergence-regularized policy learning.
arXiv Detail & Related papers (2025-02-09T22:14:45Z) - Non-Asymptotic Analysis for Single-Loop (Natural) Actor-Critic with Compatible Function Approximation [18.77565744533582]
Actor-critic (AC) is a powerful method for learning an optimal policy in reinforcement learning.
AC converges to an $epsilon+varepsilon_textcritic$ neighborhood of stationary points with the best known sample complexity.
This paper analyzes the convergence of both AC and NAC algorithms with compatible function approximation.
arXiv Detail & Related papers (2024-06-03T20:05:04Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - On the Global Convergence of Natural Actor-Critic with Two-layer Neural
Network Parametrization [38.32265770020665]
We study a natural actor-critic algorithm that utilizes neural networks to represent the critic.
Our aim is to establish sample complexity guarantees for this algorithm, achieving a deeper understanding of its performance characteristics.
arXiv Detail & Related papers (2023-06-18T06:22:04Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - Global Convergence of Two-timescale Actor-Critic for Solving Linear
Quadratic Regulator [43.13238243240668]
We develop a new analysis framework that allows establishing the global convergence to an $epsilon$-optimal solution.
This is the first finite-time convergence analysis for the single sample two-timescale AC for solving LQR with global optimality.
arXiv Detail & Related papers (2022-08-18T09:57:03Z) - A Newton-CG based barrier method for finding a second-order stationary
point of nonconvex conic optimization with complexity guarantees [0.5922488908114022]
We consider finding an approximate second-order stationary point (SOSP) that minimizes a twice differentiable function intersection.
Our method is not only iteration, but also achieves $mincal O(epsilon/2) which matches the best known complexity.
arXiv Detail & Related papers (2022-07-12T17:21:45Z) - Finite-Time Analysis of Fully Decentralized Single-Timescale
Actor-Critic [4.94128206910124]
We introduce a fully decentralized Actor-Critic (AC) algorithm, where actor, critic, and global reward estimator are updated in an alternating manner.
We show that our algorithm has sample complexity of $tildemathcalO(epsilon-2)$ under Markovian sampling.
We also provide a local action privacy-preserving version of our algorithm and its analysis.
arXiv Detail & Related papers (2022-06-12T13:14:14Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
We propose a projection-free conditional gradient-type algorithm for composition optimization.
We show that the number of oracles and the linear-minimization oracle required by the proposed algorithm, are of order $mathcalO_T(epsilon-2)$ and $mathcalO_T(epsilon-3)$ respectively.
arXiv Detail & Related papers (2022-02-09T06:05:38Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
We show that $O(k log L)$ samples suffice to guarantee that the signal is close to any vector that minimizes an amplitude-based empirical loss function.
We adapt this result to sparse phase retrieval, and show that $O(s log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional.
arXiv Detail & Related papers (2021-06-29T12:49:54Z) - Finite-Sample Analysis of Off-Policy Natural Actor-Critic with Linear
Function Approximation [5.543220407902113]
We develop a novel variant of off-policy natural actor-critic algorithm with linear function approximation.
We establish a sample complexity of $mathcalO(epsilon-3)$, outperforming all the previously known convergence bounds of such algorithms.
arXiv Detail & Related papers (2021-05-26T13:35:42Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
We develop a doubly robust off-policy AC (DR-Off-PAC) for discounted MDP.
DR-Off-PAC adopts a single timescale structure, in which both actor and critics are updated simultaneously with constant stepsize.
We study the finite-time convergence rate and characterize the sample complexity for DR-Off-PAC to attain an $epsilon$-accurate optimal policy.
arXiv Detail & Related papers (2021-02-23T18:56:13Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Non-asymptotic Convergence Analysis of Two Time-scale (Natural)
Actor-Critic Algorithms [58.57004511121862]
Actor-critic (AC) and natural actor-critic (NAC) algorithms are often executed in two ways for finding optimal policies.
We show that two time-scale AC requires the overall sample complexity at the order of $mathcalO(epsilon-2.5log3(epsilon-1))$ to attain an $epsilon$-accurate stationary point.
We develop novel techniques for bounding the bias error of the actor due to dynamically changing Markovian sampling.
arXiv Detail & Related papers (2020-05-07T15:42:31Z) - Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms [58.57004511121862]
This paper characterizes the convergence rate and sample complexity of AC and NAC under Markovian sampling.
We show that AC and NAC attain orderwise performance improvement over PG and NPG under infinite horizon due to the incorporation of critic.
arXiv Detail & Related papers (2020-04-27T17:11:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.