Linear-cost unbiased posterior estimates for crossed effects and matrix factorization models via couplings
- URL: http://arxiv.org/abs/2410.08939v1
- Date: Fri, 11 Oct 2024 16:05:01 GMT
- Title: Linear-cost unbiased posterior estimates for crossed effects and matrix factorization models via couplings
- Authors: Paolo Maria Ceriani, Giacomo Zanella,
- Abstract summary: We design and analyze unbiased Markov chain Monte Carlo schemes based on couplings of blocked Gibbs samplers (BGSs)
Our methodology is designed for and applicable to high-dimensional BGS with conditionally independent blocks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design and analyze unbiased Markov chain Monte Carlo (MCMC) schemes based on couplings of blocked Gibbs samplers (BGSs), whose total computational costs scale linearly with the number of parameters and data points. Our methodology is designed for and applicable to high-dimensional BGS with conditionally independent blocks, which are often encountered in Bayesian modeling. We provide bounds on the expected number of iterations needed for coalescence for Gaussian targets, which imply that practical two-step coupling strategies achieve coalescence times that match the relaxation times of the original BGS scheme up to a logarithmic factor. To illustrate the practical relevance of our methodology, we apply it to high-dimensional crossed random effect and probabilistic matrix factorization models, for which we develop a novel BGS scheme with improved convergence speed. Our methodology provides unbiased posterior estimates at linear cost (usually requiring only a few BGS iterations for problems with thousands of parameters), matching state-of-the-art procedures for both frequentist and Bayesian estimation of those models.
Related papers
- Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Bayesian Cramér-Rao Bound Estimation with Score-Based Models [3.4480437706804503]
The Bayesian Cram'er-Rao bound (CRB) provides a lower bound on the mean square error of any Bayesian estimator under mild regularity conditions.
This work introduces a new data-driven estimator for the CRB using score matching.
arXiv Detail & Related papers (2023-09-28T00:22:21Z) - Joint Graph Learning and Model Fitting in Laplacian Regularized
Stratified Models [5.933030735757292]
Laplacian regularized stratified models (LRSM) are models that utilize the explicit or implicit network structure of the sub-problems.
This paper shows the importance and sensitivity of graph weights in LRSM, and provably show that the sensitivity can be arbitrarily large.
We propose a generic approach to jointly learn the graph while fitting the model parameters by solving a single optimization problem.
arXiv Detail & Related papers (2023-05-04T06:06:29Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Support Recovery with Stochastic Gates: Theory and Application for
Linear Models [9.644417971611908]
We analyze the problem of simultaneous support recovery and estimation of the coefficient vector ($beta*$) in a linear model with independent and identically distributed Normal errors.
Considering design we show that under reasonable conditions on dimension and sparsity of $beta*$ the STG based estimator converges to the true data generating coefficient vector and also detects its support set with high probability.
arXiv Detail & Related papers (2021-10-29T17:59:43Z) - Spike-and-Slab Generalized Additive Models and Scalable Algorithms for
High-Dimensional Data [0.0]
We propose hierarchical generalized additive models (GAMs) to accommodate high-dimensional data.
We consider the smoothing penalty for proper shrinkage of curve and separation of smoothing function linear and nonlinear spaces.
Two and deterministic algorithms, EM-Coordinate Descent and EM-Iterative Weighted Least Squares, are developed for different utilities.
arXiv Detail & Related papers (2021-10-27T14:11:13Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian
Processes [3.564709604457361]
"Projection" mapping consists of an orthonormal matrix that is considered a priori unknown and needs to be inferred jointly with the GP parameters.
We extend the proposed framework to multi-fidelity models using GPs including the scenarios of training multiple outputs together.
The benefits of our proposed framework, are illustrated on the computationally challenging three-dimensional aerodynamic optimization of a last-stage blade for an industrial gas turbine.
arXiv Detail & Related papers (2020-08-05T22:28:53Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.