Semantic Score Distillation Sampling for Compositional Text-to-3D Generation
- URL: http://arxiv.org/abs/2410.09009v1
- Date: Fri, 11 Oct 2024 17:26:00 GMT
- Title: Semantic Score Distillation Sampling for Compositional Text-to-3D Generation
- Authors: Ling Yang, Zixiang Zhang, Junlin Han, Bohan Zeng, Runjia Li, Philip Torr, Wentao Zhang,
- Abstract summary: Generating high-quality 3D assets from textual descriptions remains a pivotal challenge in computer graphics and vision research.
We introduce a novel SDS approach, designed to improve the expressiveness and accuracy of compositional text-to-3D generation.
Our approach integrates new semantic embeddings that maintain consistency across different rendering views.
By leveraging explicit semantic guidance, our method unlocks the compositional capabilities of existing pre-trained diffusion models.
- Score: 28.88237230872795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating high-quality 3D assets from textual descriptions remains a pivotal challenge in computer graphics and vision research. Due to the scarcity of 3D data, state-of-the-art approaches utilize pre-trained 2D diffusion priors, optimized through Score Distillation Sampling (SDS). Despite progress, crafting complex 3D scenes featuring multiple objects or intricate interactions is still difficult. To tackle this, recent methods have incorporated box or layout guidance. However, these layout-guided compositional methods often struggle to provide fine-grained control, as they are generally coarse and lack expressiveness. To overcome these challenges, we introduce a novel SDS approach, Semantic Score Distillation Sampling (SemanticSDS), designed to effectively improve the expressiveness and accuracy of compositional text-to-3D generation. Our approach integrates new semantic embeddings that maintain consistency across different rendering views and clearly differentiate between various objects and parts. These embeddings are transformed into a semantic map, which directs a region-specific SDS process, enabling precise optimization and compositional generation. By leveraging explicit semantic guidance, our method unlocks the compositional capabilities of existing pre-trained diffusion models, thereby achieving superior quality in 3D content generation, particularly for complex objects and scenes. Experimental results demonstrate that our SemanticSDS framework is highly effective for generating state-of-the-art complex 3D content. Code: https://github.com/YangLing0818/SemanticSDS-3D
Related papers
- BIFRÖST: 3D-Aware Image compositing with Language Instructions [27.484947109237964]
Bifr"ost is a novel 3D-aware framework that is built upon diffusion models to perform instruction-based image composition.
Bifr"ost addresses issues by training MLLM as a 2.5D location predictor and integrating depth maps as an extra condition during the generation process.
arXiv Detail & Related papers (2024-10-24T18:35:12Z) - MVGaussian: High-Fidelity text-to-3D Content Generation with Multi-View Guidance and Surface Densification [13.872254142378772]
This paper introduces a unified framework for text-to-3D content generation.
Our approach utilizes multi-view guidance to iteratively form the structure of the 3D model.
We also introduce a novel densification algorithm that aligns gaussians close to the surface.
arXiv Detail & Related papers (2024-09-10T16:16:34Z) - Grounded Compositional and Diverse Text-to-3D with Pretrained Multi-View Diffusion Model [65.58911408026748]
We propose Grounded-Dreamer to generate 3D assets that can accurately follow complex, compositional text prompts.
We first advocate leveraging text-guided 4-view images as the bottleneck in the text-to-3D pipeline.
We then introduce an attention refocusing mechanism to encourage text-aligned 4-view image generation.
arXiv Detail & Related papers (2024-04-28T04:05:10Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Directional Texture Editing for 3D Models [51.31499400557996]
ITEM3D is designed for automatic textbf3D object editing according to the text textbfInstructions.
Leveraging the diffusion models and the differentiable rendering, ITEM3D takes the rendered images as the bridge of text and 3D representation.
arXiv Detail & Related papers (2023-09-26T12:01:13Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - Compositional 3D Scene Generation using Locally Conditioned Diffusion [49.5784841881488]
We introduce textbflocally conditioned diffusion as an approach to compositional scene diffusion.
We demonstrate a score distillation sampling--based text-to-3D synthesis pipeline that enables compositional 3D scene generation at a higher fidelity than relevant baselines.
arXiv Detail & Related papers (2023-03-21T22:37:16Z) - Vox-E: Text-guided Voxel Editing of 3D Objects [14.88446525549421]
Large scale text-guided diffusion models have garnered significant attention due to their ability to synthesize diverse images.
We present a technique that harnesses the power of latent diffusion models for editing existing 3D objects.
arXiv Detail & Related papers (2023-03-21T17:36:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.