Alberta Wells Dataset: Pinpointing Oil and Gas Wells from Satellite Imagery
- URL: http://arxiv.org/abs/2410.09032v1
- Date: Fri, 11 Oct 2024 17:49:50 GMT
- Title: Alberta Wells Dataset: Pinpointing Oil and Gas Wells from Satellite Imagery
- Authors: Pratinav Seth, Michelle Lin, Brefo Dwamena Yaw, Jade Boutot, Mary Kang, David Rolnick,
- Abstract summary: Millions of abandoned oil and gas wells are scattered across the world.
Many of these locations are unknown, preventing the wells from being plugged and their polluting effects averted.
We introduce the first large-scale benchmark dataset for this problem, leveraging medium-resolution multi-spectral satellite imagery from Planet Labs.
- Score: 19.482912977993422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Millions of abandoned oil and gas wells are scattered across the world, leaching methane into the atmosphere and toxic compounds into the groundwater. Many of these locations are unknown, preventing the wells from being plugged and their polluting effects averted. Remote sensing is a relatively unexplored tool for pinpointing abandoned wells at scale. We introduce the first large-scale benchmark dataset for this problem, leveraging medium-resolution multi-spectral satellite imagery from Planet Labs. Our curated dataset comprises over 213,000 wells (abandoned, suspended, and active) from Alberta, a region with especially high well density, sourced from the Alberta Energy Regulator and verified by domain experts. We evaluate baseline algorithms for well detection and segmentation, showing the promise of computer vision approaches but also significant room for improvement.
Related papers
- Oil Spill Drone: A Dataset of Drone-Captured, Segmented RGB Images for
Oil Spill Detection in Port Environments [0.0]
There's a scarcity of datasets employing RGB images for oil spill detection in maritime settings.
This paper presents a unique, annotated dataset, leveraging a neural network for analysis on both desktop and edge computing platforms.
The dataset, captured via drone, comprises 1268 images categorized into oil, water, and other, with a convolutional neural network trained using an Unet model architecture achieving an F1 score of 0.71 for oil detection.
arXiv Detail & Related papers (2024-02-28T09:47:35Z) - Zone Evaluation: Revealing Spatial Bias in Object Detection [69.59295428233844]
A fundamental limitation of object detectors is that they suffer from "spatial bias"
We present a new zone evaluation protocol, which measures the detection performance over zones.
For the first time, we provide numerical results, showing that the object detectors perform quite unevenly across the zones.
arXiv Detail & Related papers (2023-10-20T01:44:49Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
Methane is one of the most potent greenhouse gases.
Current methane emission monitoring techniques rely on approximate emission factors or self-reporting.
Deep learning methods can be leveraged to automatize the detection of methane leaks in Sentinel-2 satellite multispectral data.
arXiv Detail & Related papers (2023-08-21T19:36:50Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions.
The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020.
We also introduce a post-processing step using a convolutional network trained on GEDI observations.
arXiv Detail & Related papers (2023-04-14T15:52:57Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
In this work, we present a deep learning pipeline that can be used to precisely detect, count, and monitor waterbirds using aerial imagery collected by a commercial drone.
By utilizing convolutional neural network-based object detectors, we show that we can detect 16 classes of waterbird species that are commonly found in colonial nesting islands along the Texas coast.
arXiv Detail & Related papers (2022-10-10T17:37:56Z) - METER-ML: A Multi-sensor Earth Observation Benchmark for Automated
Methane Source Mapping [2.814379852040968]
Deep learning can identify the locations and characteristics of methane sources.
There is a substantial lack of publicly available data to enable machine learning researchers and practitioners to build automated mapping approaches.
We construct a multi-sensor dataset called METER-ML containing 86,625 georeferenced NAIP, Sentinel-1, and Sentinel-2 images in the U.S.
We find that our best model achieves an area under the precision recall curve of 0.915 for identifying concentrated animal feeding operations and 0.821 for oil refineries and petroleum terminals on an expert-labeled test set.
arXiv Detail & Related papers (2022-07-22T16:12:07Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z) - Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution
Satellite Imagery [59.32805936205217]
Cattle farming is responsible for 8.8% of greenhouse gas emissions worldwide.
We obtained satellite imagery of the Amazon at 40cm resolution, and compiled a dataset of 903 images containing a total of 28498 cattle.
Our experiments show promising results and highlight important directions for the next steps on both counting algorithms and the data collection process for solving such challenges.
arXiv Detail & Related papers (2020-11-14T19:07:39Z) - OGNet: Towards a Global Oil and Gas Infrastructure Database using Deep
Learning on Remotely Sensed Imagery [8.471461072749472]
At least a quarter of the warming that the Earth is experiencing today is due to anthropogenic methane emissions.
In this work, we develop deep learning algorithms that leverage freely available high-resolution aerial imagery to automatically detect oil and gas infrastructure.
We show that OGNet detects many facilities which are not present in four standard public datasets of oil and gas infrastructure.
arXiv Detail & Related papers (2020-11-14T06:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.