Volatility Forecasting in Global Financial Markets Using TimeMixer
- URL: http://arxiv.org/abs/2410.09062v1
- Date: Fri, 27 Sep 2024 17:35:28 GMT
- Title: Volatility Forecasting in Global Financial Markets Using TimeMixer
- Authors: Alex Li,
- Abstract summary: I apply TimeMixer, a state-of-the-art time series forecasting model, to predict the volatility of global financial assets.
TimeMixer effectively captures both short-term and long-term temporal patterns by analyzing data across different scales.
My empirical results reveal that while TimeMixer performs exceptionally well in short-term volatility forecasting, its accuracy diminishes for longer-term predictions.
- Score: 0.21756081703276003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting volatility in financial markets, including stocks, index ETFs, foreign exchange, and cryptocurrencies, remains a challenging task due to the inherent complexity and non-linear dynamics of these time series. In this study, I apply TimeMixer, a state-of-the-art time series forecasting model, to predict the volatility of global financial assets. TimeMixer utilizes a multiscale-mixing approach that effectively captures both short-term and long-term temporal patterns by analyzing data across different scales. My empirical results reveal that while TimeMixer performs exceptionally well in short-term volatility forecasting, its accuracy diminishes for longer-term predictions, particularly in highly volatile markets. These findings highlight TimeMixer's strength in capturing short-term volatility, making it highly suitable for practical applications in financial risk management, where precise short-term forecasts are critical. However, the model's limitations in long-term forecasting point to potential areas for further refinement.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting [49.6208017412376]
TimeBridge is a novel framework designed to bridge the gap between non-stationarity and dependency modeling.
TimeBridge consistently achieves state-of-the-art performance in both short-term and long-term forecasting.
arXiv Detail & Related papers (2024-10-06T10:41:03Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
This study investigates the efficacy of advanced deep learning models for short-term trend forecasting using daily and hourly closing prices from the S&P 500 index and the Brazilian ETF EWZ.
We introduce the Extended Long Short-Term Memory for Time Series (xLSTM-TS) model, an xLSTM adaptation optimised for time series prediction.
Among the models tested, xLSTM-TS consistently outperformed others. For example, it achieved a test accuracy of 72.82% and an F1 score of 73.16% on the EWZ daily dataset.
arXiv Detail & Related papers (2024-08-22T13:58:55Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Short-term Volatility Estimation for High Frequency Trades using
Gaussian processes (GPs) [0.0]
It is crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns.
This paper implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades.
arXiv Detail & Related papers (2023-11-18T02:03:48Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Parallel Extraction of Long-term Trends and Short-term Fluctuation
Framework for Multivariate Time Series Forecasting [14.399919351944677]
There are two characteristics of time series, that is, long-term trend and short-term fluctuation.
The existing prediction methods often do not distinguish between them, which reduces the accuracy of the prediction model.
Three prediction sub-networks are constructed to predict long-term trends, short-term fluctuations and the final value to be predicted.
arXiv Detail & Related papers (2020-08-18T03:55:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.