pyhgf: A neural network library for predictive coding
- URL: http://arxiv.org/abs/2410.09206v1
- Date: Fri, 11 Oct 2024 19:21:38 GMT
- Title: pyhgf: A neural network library for predictive coding
- Authors: Nicolas Legrand, Lilian Weber, Peter Thestrup Waade, Anna Hedvig Møller Daugaard, Mojtaba Khodadadi, Nace Mikuš, Chris Mathys,
- Abstract summary: texttpyhgf is a Python package for creating, manipulating and sampling dynamic networks for predictive coding.
We improve over other frameworks by enclosing the network components as transparent, modular and malleable variables in the message-passing steps.
The transparency of core variables can also translate into inference processes that leverage self-organisation principles.
- Score: 0.2150989251218736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian models of cognition have gained considerable traction in computational neuroscience and psychiatry. Their scopes are now expected to expand rapidly to artificial intelligence, providing general inference frameworks to support embodied, adaptable, and energy-efficient autonomous agents. A central theory in this domain is predictive coding, which posits that learning and behaviour are driven by hierarchical probabilistic inferences about the causes of sensory inputs. Biological realism constrains these networks to rely on simple local computations in the form of precision-weighted predictions and prediction errors. This can make this framework highly efficient, but its implementation comes with unique challenges on the software development side. Embedding such models in standard neural network libraries often becomes limiting, as these libraries' compilation and differentiation backends can force a conceptual separation between optimization algorithms and the systems being optimized. This critically departs from other biological principles such as self-monitoring, self-organisation, cellular growth and functional plasticity. In this paper, we introduce \texttt{pyhgf}: a Python package backed by JAX and Rust for creating, manipulating and sampling dynamic networks for predictive coding. We improve over other frameworks by enclosing the network components as transparent, modular and malleable variables in the message-passing steps. The resulting graphs can implement arbitrary computational complexities as beliefs propagation. But the transparency of core variables can also translate into inference processes that leverage self-organisation principles, and express structure learning, meta-learning or causal discovery as the consequence of network structural adaptation to surprising inputs. The code, tutorials and documentation are hosted at: https://github.com/ilabcode/pyhgf.
Related papers
- Predictive Coding Networks and Inference Learning: Tutorial and Survey [0.7510165488300368]
Predictive coding networks (PCNs) are based on the neuroscientific framework of predictive coding.
Unlike traditional neural networks trained with backpropagation (BP), PCNs utilize inference learning (IL), a more biologically plausible algorithm.
As inherently probabilistic (graphical) latent variable models, PCNs provide a versatile framework for both supervised learning and unsupervised (generative) modeling.
arXiv Detail & Related papers (2024-07-04T18:39:20Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training.
It is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby.
It can be combined with both discriminative and generative neural models.
arXiv Detail & Related papers (2024-05-12T22:18:25Z) - Nondeterministic Stacks in Neural Networks [0.456877715768796]
We develop a differentiable data structure that efficiently simulates a nondeterministic pushdown automaton.
We show that this raises their formal recognition power to arbitrary context-free languages.
We also show that an RNN augmented with a nondeterministic stack is capable of surprisingly powerful behavior.
arXiv Detail & Related papers (2023-04-25T16:00:40Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
We present a new domain definition language, named PDSketch.
It allows users to flexibly define high-level structures in the transition models.
Details of the transition model will be filled in by trainable neural networks.
arXiv Detail & Related papers (2023-03-09T18:54:12Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
The backpropagation of error algorithm used to train deep neural networks has been fundamental to the successes of deep learning.
Recent work has developed the idea into a general-purpose algorithm able to train neural networks using only local computations.
We show the substantially greater flexibility of predictive coding networks against equivalent deep neural networks.
arXiv Detail & Related papers (2022-02-18T22:57:03Z) - AI without networks [0.0]
We develop a network-free framework for AI incorporating generative modeling.
We demonstrate this framework with examples from three different disciplines - ethology, control theory, and mathematics.
We also propose an easily computed method of credit assignment based on this framework, to help address ethical-legal challenges raised by generative AI.
arXiv Detail & Related papers (2021-06-07T05:50:02Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
We develop a strategy to translate core machine learning architectures into their predictive coding equivalents.
Our models perform equivalently to backprop on challenging machine learning benchmarks.
Our method raises the potential that standard machine learning algorithms could in principle be directly implemented in neural circuitry.
arXiv Detail & Related papers (2020-06-07T15:35:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.