MMAD: The First-Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection
- URL: http://arxiv.org/abs/2410.09453v1
- Date: Sat, 12 Oct 2024 09:16:09 GMT
- Title: MMAD: The First-Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection
- Authors: Xi Jiang, Jian Li, Hanqiu Deng, Yong Liu, Bin-Bin Gao, Yifeng Zhou, Jialin Li, Chengjie Wang, Feng Zheng,
- Abstract summary: We present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial anomaly detection.
We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset.
With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs.
- Score: 66.05200339481115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research.
Related papers
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
This paper presents a comprehensive review of 200 benchmarks and evaluations for Multimodal Large Language Models (MLLMs)
We focus on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities.
Our key argument is that evaluation should be regarded as a crucial discipline to support the development of MLLMs better.
arXiv Detail & Related papers (2024-08-16T09:52:02Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning.
The extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry.
This survey provides a comprehensive and systematic review of the current state of efficient MLLMs.
arXiv Detail & Related papers (2024-05-17T12:37:10Z) - Multimodal Large Language Models to Support Real-World Fact-Checking [80.41047725487645]
Multimodal large language models (MLLMs) carry the potential to support humans in processing vast amounts of information.
While MLLMs are already being used as a fact-checking tool, their abilities and limitations in this regard are understudied.
We propose a framework for systematically assessing the capacity of current multimodal models to facilitate real-world fact-checking.
arXiv Detail & Related papers (2024-03-06T11:32:41Z) - How Easy is It to Fool Your Multimodal LLMs? An Empirical Analysis on Deceptive Prompts [54.07541591018305]
We present MAD-Bench, a benchmark that contains 1000 test samples divided into 5 categories, such as non-existent objects, count of objects, and spatial relationship.
We provide a comprehensive analysis of popular MLLMs, ranging from GPT-4v, Reka, Gemini-Pro, to open-sourced models, such as LLaVA-NeXT and MiniCPM-Llama3.
While GPT-4o achieves 82.82% accuracy on MAD-Bench, the accuracy of any other model in our experiments ranges from 9% to 50%.
arXiv Detail & Related papers (2024-02-20T18:31:27Z) - An Empirical Study on Large Language Models in Accuracy and Robustness
under Chinese Industrial Scenarios [14.335979063157522]
One of the key future applications of large language models (LLMs) will be practical deployment in industrial production.
We present a comprehensive empirical study on the accuracy and robustness of LLMs in the context of the Chinese industrial production area.
arXiv Detail & Related papers (2024-01-27T03:37:55Z) - Exploring the Reasoning Abilities of Multimodal Large Language Models
(MLLMs): A Comprehensive Survey on Emerging Trends in Multimodal Reasoning [44.12214030785711]
We review the existing evaluation protocols of multimodal reasoning, categorize and illustrate the frontiers of Multimodal Large Language Models (MLLMs)
We introduce recent trends in applications of MLLMs on reasoning-intensive tasks and discuss current practices and future directions.
arXiv Detail & Related papers (2024-01-10T15:29:21Z) - A Unified Industrial Large Knowledge Model Framework in Industry 4.0 and Smart Manufacturing [0.32885740436059047]
The recent emergence of large language models (LLMs) demonstrates the potential for artificial general intelligence.
This paper proposes a unified industrial large knowledge model (ILKM) framework, emphasizing its potential to revolutionize future industries.
arXiv Detail & Related papers (2023-12-22T04:30:27Z) - Mixed Distillation Helps Smaller Language Model Better Reasoning [27.934081882868902]
We introduce Mixed Distillation (MD) framework, which capitalizes on the strengths of Program of Thought (PoT) and Chain of Thought (CoT) capabilities within large language models (LLMs)
Our experimental results show that MD significantly enhances the single-path and multi-path reasoning ability of smaller models in various tasks.
arXiv Detail & Related papers (2023-12-17T14:28:28Z) - LUNA: A Model-Based Universal Analysis Framework for Large Language Models [19.033382204019667]
Self-attention mechanism, extremely large model scale, and autoregressive generation schema present new challenges for quality analysis.
We propose a universal analysis framework for LLMs, designed to be general andinterpretable.
In particular, we first leverage the data from desired trustworthiness perspectives to construct an abstract model.
arXiv Detail & Related papers (2023-10-22T07:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.