DRCap: Decoding CLAP Latents with Retrieval-augmented Generation for Zero-shot Audio Captioning
- URL: http://arxiv.org/abs/2410.09472v1
- Date: Sat, 12 Oct 2024 10:21:00 GMT
- Title: DRCap: Decoding CLAP Latents with Retrieval-augmented Generation for Zero-shot Audio Captioning
- Authors: Xiquan Li, Wenxi Chen, Ziyang Ma, Xuenan Xu, Yuzhe Liang, Zhisheng Zheng, Qiuqiang Kong, Xie Chen,
- Abstract summary: DRCap is a data-efficient and flexible zero-shot audio captioning system.
It requires text-only data for training and can quickly adapt to new domains without additional fine-tuning.
- Score: 13.601154787754046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While automated audio captioning (AAC) has made notable progress, traditional fully supervised AAC models still face two critical challenges: the need for expensive audio-text pair data for training and performance degradation when transferring across domains. To overcome these limitations, we present DRCap, a data-efficient and flexible zero-shot audio captioning system that requires text-only data for training and can quickly adapt to new domains without additional fine-tuning. DRCap integrates a contrastive language-audio pre-training (CLAP) model and a large-language model (LLM) as its backbone. During training, the model predicts the ground-truth caption with a fixed text encoder from CLAP, whereas, during inference, the text encoder is replaced with the audio encoder to generate captions for audio clips in a zero-shot manner. To mitigate the modality gap of the CLAP model, we use both the projection strategy from the encoder side and the retrieval-augmented generation strategy from the decoder side. Specifically, audio embeddings are first projected onto a text embedding support to absorb extensive semantic information within the joint multi-modal space of CLAP. At the same time, similar captions retrieved from a datastore are fed as prompts to instruct the LLM, incorporating external knowledge to take full advantage of its strong generative capability. Conditioned on both the projected CLAP embedding and the retrieved similar captions, the model is able to produce a more accurate and semantically rich textual description. By tailoring the text embedding support and the caption datastore to the target domain, DRCap acquires a robust ability to adapt to new domains in a training-free manner. Experimental results demonstrate that DRCap outperforms all other zero-shot models in in-domain scenarios and achieves state-of-the-art performance in cross-domain scenarios.
Related papers
- Revisit Large-Scale Image-Caption Data in Pre-training Multimodal Foundation Models [63.01630478059315]
Recent advancements in multimodal models highlight the value of rewritten captions for improving performance.
It is not clear whether synthetic captions and their interaction with original web-crawled AltTexts in pre-training is still not well understood.
We propose a novel, controllable, and scalable captioning pipeline designed to generate diverse caption formats tailored to various multimodal models.
arXiv Detail & Related papers (2024-10-03T17:54:52Z) - Enhancing Large Language Model-based Speech Recognition by Contextualization for Rare and Ambiguous Words [10.2138250640885]
We develop a large language model (LLM) based automatic speech recognition (ASR) system that can be contextualized by providing keywords in text prompts.
We adopt decoder-only architecture and use our in-house LLM, PLaMo-100B, pre-trained from scratch using datasets dominated by Japanese and English texts as the decoder.
arXiv Detail & Related papers (2024-08-15T08:50:58Z) - Decoder Pre-Training with only Text for Scene Text Recognition [54.93037783663204]
Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets.
We introduce a novel method named Decoder Pre-training with only text for STR (DPTR)
DPTR treats text embeddings produced by the CLIP text encoder as pseudo visual embeddings and uses them to pre-train the decoder.
arXiv Detail & Related papers (2024-08-11T06:36:42Z) - Learning text-to-video retrieval from image captioning [59.81537951811595]
We describe a protocol to study text-to-video retrieval training with unlabeled videos.
We assume (i) no access to labels for any videos, and (ii) access to labeled images in the form of text.
We show that automatically labeling video frames with image captioning allows text-to-video retrieval training.
arXiv Detail & Related papers (2024-04-26T15:56:08Z) - HowToCaption: Prompting LLMs to Transform Video Annotations at Scale [72.69268311756082]
We propose to leverage the capabilities of large language models (LLMs) to obtain high-quality video descriptions aligned with videos at scale.
We introduce a prompting method that is able to take into account a longer text of subtitles, allowing us to capture the contextual information beyond one single sentence.
We apply our method to the subtitles of the HowTo100M dataset, creating a new large-scale dataset, HowToCaption.
arXiv Detail & Related papers (2023-10-07T19:32:55Z) - Weakly-supervised Automated Audio Captioning via text only training [1.504795651143257]
We propose a weakly-supervised approach to train an AAC model assuming only text data and a pre-trained CLAP model.
We evaluate our proposed method on Clotho and AudioCaps datasets demonstrating its ability to achieve a relative performance of up to $83%$ compared to fully supervised approaches.
arXiv Detail & Related papers (2023-09-21T16:40:46Z) - RECAP: Retrieval-Augmented Audio Captioning [46.27383142898749]
We present RECAP, a novel and effective audio captioning system that generates captions conditioned on an input audio.
Our proposed method can transfer to any domain without the need for any additional fine-tuning.
To promote research in this space, we also release 150,000+ new weakly labeled captions for AudioSet, AudioCaps, and Clotho.
arXiv Detail & Related papers (2023-09-18T14:53:08Z) - DeCap: Decoding CLIP Latents for Zero-Shot Captioning via Text-Only
Training [73.74291217502928]
We propose a simple framework, named DeCap, for zero-shot captioning.
We introduce a lightweight visual-aware language decoder.
We project the visual embedding into the CLIP text embedding space, while the projected embedding retains the information of the visual input.
arXiv Detail & Related papers (2023-03-06T11:02:47Z) - Paraphrasing Is All You Need for Novel Object Captioning [126.66301869607656]
Novel object captioning (NOC) aims to describe images containing objects without observing their ground truth captions during training.
We present Paraphrasing-to-Captioning (P2C), a two-stage learning framework for NOC, which wouldally optimize the output captions via paraphrasing.
arXiv Detail & Related papers (2022-09-25T22:56:04Z) - CL4AC: A Contrastive Loss for Audio Captioning [43.83939284740561]
We propose a novel encoder-decoder framework called Contrastive Loss for Audio Captioning (CL4AC)
In CL4AC, the self-supervision signals derived from the original audio-text paired data are used to exploit the correspondences between audio and texts.
Experiments are performed on the Clotho dataset to show the effectiveness of our proposed approach.
arXiv Detail & Related papers (2021-07-21T10:13:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.