Poverty mapping in Mongolia with AI-based Ger detection reveals urban slums persist after the COVID-19 pandemic
- URL: http://arxiv.org/abs/2410.09522v1
- Date: Sat, 12 Oct 2024 12:47:02 GMT
- Title: Poverty mapping in Mongolia with AI-based Ger detection reveals urban slums persist after the COVID-19 pandemic
- Authors: Jeasurk Yang, Sumin Lee, Sungwon Park, Minjun Lee, Meeyoung Cha,
- Abstract summary: Mongolia is among the countries undergoing rapid urbanization.
Ger settlements in cities are increasingly recognized as slums by their socio-economic deprivation.
We develop a computer vision algorithm to detect gers in Ulaanbaatar, the capital of Mongolia, utilizing satellite images collected from 2015 to 2023.
- Score: 16.51658182310753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mongolia is among the countries undergoing rapid urbanization, and its temporary nomadic dwellings-known as Ger-have expanded into urban areas. Ger settlements in cities are increasingly recognized as slums by their socio-economic deprivation. The distinctive circular, tent-like shape of gers enables their detection through very-high-resolution satellite imagery. We develop a computer vision algorithm to detect gers in Ulaanbaatar, the capital of Mongolia, utilizing satellite images collected from 2015 to 2023. Results reveal that ger settlements have been displaced towards the capital's peripheral areas. The predicted slum ratio based on our results exhibits a significant correlation (r = 0.84) with the World Bank's district-level poverty data. Our nationwide extrapolation suggests that slums may continue to take up one-fifth of the population after the COVID-19 pandemic, contrary to other official predictions that anticipated a decline. We discuss the potential of machine learning on satellite imagery in providing insights into urbanization patterns and monitoring the Sustainable Development Goals.
Related papers
- UV-SAM: Adapting Segment Anything Model for Urban Village Identification [25.286722125746902]
Governments heavily depend on field survey methods to monitor the urban villages.
To accurately identify urban village boundaries from satellite images, we adapt the Segment Anything Model (SAM) to urban village segmentation, named UV-SAM.
UV-SAM first leverages a small-sized semantic segmentation model to produce mixed prompts for urban villages, including mask, bounding box, and image representations, which are then fed into SAM for fine-grained boundary identification.
arXiv Detail & Related papers (2024-01-16T03:21:42Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
Overhead images can help fill in the gaps where community information is sparse.
Recent advancements in machine learning and computer vision have made it possible to quickly extract features from and detect patterns in image data.
In this work, we explore how well two approaches, a supervised convolutional neural network and semi-supervised clustering can estimate population density, median household income, and educational attainment.
arXiv Detail & Related papers (2023-09-28T19:30:26Z) - A Satellite Imagery Dataset for Long-Term Sustainable Development in
United States Cities [15.862784224905095]
We develop a satellite imagery dataset using deep learning models for five sustainable development indicators.
The proposed dataset covers the 100 most populated U.S. cities and corresponding Census Block Groups from 2014 to 2023.
arXiv Detail & Related papers (2023-08-01T11:40:19Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - Urban form and COVID-19 cases and deaths in Greater London: an urban
morphometric approach [63.29165619502806]
The COVID-19 pandemic generated a considerable debate in relation to urban density.
This is an old debate, originated in mid 19th century's England with the emergence of public health and urban planning disciplines.
We describe urban form at individual building level and then aggregate information for official neighbourhoods.
arXiv Detail & Related papers (2022-10-16T10:01:10Z) - Spatial-Temporal Hypergraph Self-Supervised Learning for Crime
Prediction [60.508960752148454]
This work proposes a Spatial-Temporal Hypergraph Self-Supervised Learning framework to tackle the label scarcity issue in crime prediction.
We propose the cross-region hypergraph structure learning to encode region-wise crime dependency under the entire urban space.
We also design the dual-stage self-supervised learning paradigm, to not only jointly capture local- and global-level spatial-temporal crime patterns, but also supplement the sparse crime representation by augmenting region self-discrimination.
arXiv Detail & Related papers (2022-04-18T23:46:01Z) - Predicting Poverty Level from Satellite Imagery using Deep Neural
Networks [0.0]
I develop deep learning computer vision methods that can predict a region's poverty level from an overhead satellite image.
I explore the impact that data quantity and data augmentation have on the representational power and overall accuracy of the networks.
arXiv Detail & Related papers (2021-11-30T18:57:24Z) - C-Watcher: A Framework for Early Detection of High-Risk Neighborhoods
Ahead of COVID-19 Outbreak [54.39837683016444]
C-Watcher aims at screening every neighborhood in a target city and predicting infection risks, prior to the spread of COVID-19 from epicenters to the city.
C-Watcher collects large-scale long-term human mobility data from Baidu Maps, then characterizes every residential neighborhood in the city using a set of features based on urban mobility patterns.
We carried out extensive experiments on C-Watcher using the real-data records in the early stage of COVID-19 outbreaks.
arXiv Detail & Related papers (2020-12-22T17:02:54Z) - Measuring Human and Economic Activity from Satellite Imagery to Support
City-Scale Decision-Making during COVID-19 Pandemic [6.623965960680924]
We use a deep learning approach that combines strategic location sampling and an ensemble of lightweight convolutional neural networks (CNNs)
This CNN ensemble framework ranked third place in the US Department of Defense xView challenge.
We show results on real examples of different sites before and after the COVID-19 outbreak to illustrate different measurable indicators.
arXiv Detail & Related papers (2020-04-16T03:47:11Z) - Measuring Spatial Subdivisions in Urban Mobility with Mobile Phone Data [58.720142291102135]
By 2050 two thirds of the world population will reside in urban areas.
This growth is faster and more complex than the ability of cities to measure and plan for their sustainability.
To understand what makes a city inclusive for all, we define a methodology to identify and characterize spatial subdivisions.
arXiv Detail & Related papers (2020-02-20T14:37:46Z) - Generating Interpretable Poverty Maps using Object Detection in
Satellite Images [80.35540308137043]
We demonstrate an interpretable computational framework to accurately predict poverty at a local level by applying object detectors to satellite images.
Using the weighted counts of objects as features, we achieve 0.539 Pearson's r2 in predicting village-level poverty in Uganda, a 31% improvement over existing (and less interpretable) benchmarks.
arXiv Detail & Related papers (2020-02-05T02:50:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.