Timeseria: an object-oriented time series processing library
- URL: http://arxiv.org/abs/2410.09567v2
- Date: Fri, 18 Oct 2024 12:18:01 GMT
- Title: Timeseria: an object-oriented time series processing library
- Authors: Stefano Alberto Russo, Giuliano Taffoni, Luca Bortolussi,
- Abstract summary: Timeseria is an object-oriented time series processing library implemented in Python.
It aims at making it easier to manipulate time series data and to build statistical and machine learning models on top of it.
- Score: 0.40964539027092917
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Timeseria is an object-oriented time series processing library implemented in Python, which aims at making it easier to manipulate time series data and to build statistical and machine learning models on top of it. Unlike common data analysis frameworks, it builds up from well defined and reusable logical units (objects), which can be easily combined together in order to ensure a high level of consistency. Thanks to this approach, Timeseria can address by design several non-trivial issues often underestimated, such as handling data losses, non-uniform sampling rates, differences between aggregated data and punctual observations, time zones, daylight saving times, and more. Timeseria comes with a comprehensive set of base data structures, common data manipulation operations, and extensible models for data reconstruction, forecasting and anomaly detection. It also integrates a powerful plotting engine capable of handling even millions of data points.
Related papers
- Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
We propose a Metadata-informed Time Series Transformer (MetaTST) for time series forecasting.
To tackle the unstructured nature of metadata, MetaTST formalizes them into natural languages by pre-designed templates.
A Transformer encoder is employed to communicate series and metadata tokens, which can extend series representations by metadata information.
arXiv Detail & Related papers (2024-10-04T11:37:55Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - A Language Model-Guided Framework for Mining Time Series with Distributional Shifts [5.082311792764403]
This paper presents an approach that utilizes large language models and data source interfaces to explore and collect time series datasets.
While obtained from external sources, the collected data share critical statistical properties with primary time series datasets.
It suggests that collected datasets can effectively supplement existing datasets, especially involving changes in data distribution.
arXiv Detail & Related papers (2024-06-07T20:21:07Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - Temporal Treasure Hunt: Content-based Time Series Retrieval System for
Discovering Insights [34.1973242428317]
Time series data is ubiquitous across various domains such as finance, healthcare, and manufacturing.
The ability to perform Content-based Time Series Retrieval (CTSR) is crucial for identifying unknown time series examples.
We introduce a CTSR benchmark dataset that comprises time series data from a variety of domains.
arXiv Detail & Related papers (2023-11-05T04:12:13Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Few-Shot Forecasting of Time-Series with Heterogeneous Channels [4.635820333232681]
We develop a model composed of permutation-invariant deep set-blocks which incorporate a temporal embedding.
We show through experiments that our model provides a good generalization, outperforming baselines carried over from simpler scenarios.
arXiv Detail & Related papers (2022-04-07T14:02:15Z) - Merlion: A Machine Learning Library for Time Series [73.46386700728577]
Merlion is an open-source machine learning library for time series.
It features a unified interface for models and datasets for anomaly detection and forecasting.
Merlion also provides a unique evaluation framework that simulates the live deployment and re-training of a model in production.
arXiv Detail & Related papers (2021-09-20T02:03:43Z) - Time Series Data Imputation: A Survey on Deep Learning Approaches [4.4458738910060775]
Time series data imputation is a well-studied problem with different categories of methods.
Time series methods based on deep learning have made progress with the usage of models like RNN.
We will review and discuss their model architectures, their pros and cons as well as their effects to show the development of the time series imputation methods.
arXiv Detail & Related papers (2020-11-23T11:57:27Z) - Partially-Aligned Data-to-Text Generation with Distant Supervision [69.15410325679635]
We propose a new generation task called Partially-Aligned Data-to-Text Generation (PADTG)
It is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains.
Our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.
arXiv Detail & Related papers (2020-10-03T03:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.