GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks
- URL: http://arxiv.org/abs/2410.09570v1
- Date: Sat, 12 Oct 2024 15:34:41 GMT
- Title: GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks
- Authors: Dingyi Zhuang, Chonghe Jiang, Yunhan Zheng, Shenhao Wang, Jinhua Zhao,
- Abstract summary: Graph Neural Networks deliver strong classification results but often suffer from poor calibration performance, leading to overconfidence or underconfidence.
Existing post hoc methods, such as temperature scaling, fail to effectively utilize graph structures, while current GNN calibration methods often overlook the potential of leveraging diverse input information and model ensembles jointly.
In the paper, we propose Graph Ensemble TemperatureScaling, a novel calibration framework that combines input and model ensemble strategies within a Graph Mixture of Experts archi SOTA calibration techniques, reducing expected calibration error by 25 percent across 10 GNN benchmark datasets.
- Score: 8.505932176266368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks deliver strong classification results but often suffer from poor calibration performance, leading to overconfidence or underconfidence. This is particularly problematic in high stakes applications where accurate uncertainty estimates are essential. Existing post hoc methods, such as temperature scaling, fail to effectively utilize graph structures, while current GNN calibration methods often overlook the potential of leveraging diverse input information and model ensembles jointly. In the paper, we propose Graph Ensemble Temperature Scaling, a novel calibration framework that combines input and model ensemble strategies within a Graph Mixture of Experts archi SOTA calibration techniques, reducing expected calibration error by 25 percent across 10 GNN benchmark datasets. Additionally, GETS is computationally efficient, scalable, and capable of selecting effective input combinations for improved calibration performance.
Related papers
- Decoupling Feature Extraction and Classification Layers for Calibrated Neural Networks [3.5284544394841117]
We show that decoupling the training of feature extraction layers and classification layers in over-parametrized DNN architectures significantly improves model calibration.
We illustrate these methods improve calibration across ViT and WRN architectures for several image classification benchmark datasets.
arXiv Detail & Related papers (2024-05-02T11:36:17Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - On Calibration of Modern Quantized Efficient Neural Networks [79.06893963657335]
Quality of calibration is observed to track the quantization quality.
GhostNet-VGG is shown to be the most robust to overall performance drop at lower precision.
arXiv Detail & Related papers (2023-09-25T04:30:18Z) - What Makes Graph Neural Networks Miscalibrated? [48.00374886504513]
We conduct a systematic study on the calibration qualities of graph neural networks (GNNs)
We identify five factors which influence the calibration of GNNs: general under-confident tendency, diversity of nodewise predictive distributions, distance to training nodes, relative confidence level, and neighborhood similarity.
We design a novel calibration method named Graph Attention Temperature Scaling (GATS), which is tailored for calibrating graph neural networks.
arXiv Detail & Related papers (2022-10-12T16:41:42Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - On Calibration of Graph Neural Networks for Node Classification [29.738179864433445]
Graph neural networks learn entity and edge embeddings for tasks such as node classification and link prediction.
These models achieve good performance with respect to accuracy, but the confidence scores associated with the predictions might not be calibrated.
We propose a topology-aware calibration method that takes the neighboring nodes into account and yields improved calibration.
arXiv Detail & Related papers (2022-06-03T13:48:10Z) - Meta-Calibration: Learning of Model Calibration Using Differentiable
Expected Calibration Error [46.12703434199988]
We introduce a new differentiable surrogate for expected calibration error (DECE) that allows calibration quality to be directly optimised.
We also propose a meta-learning framework that uses DECE to optimise for validation set calibration.
arXiv Detail & Related papers (2021-06-17T15:47:50Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
Calibration in Deep Learning [21.08664370117846]
We show how Mix-n-Match calibration strategies can help achieve remarkably better data-efficiency and expressive power.
We also reveal potential issues in standard evaluation practices.
Our approaches outperform state-of-the-art solutions on both the calibration as well as the evaluation tasks.
arXiv Detail & Related papers (2020-03-16T17:00:35Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
Miscalibration is a mismatch between a model's confidence and its correctness.
We show that focal loss allows us to learn models that are already very well calibrated.
We show that our approach achieves state-of-the-art calibration without compromising on accuracy in almost all cases.
arXiv Detail & Related papers (2020-02-21T17:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.