EmbodiedCity: A Benchmark Platform for Embodied Agent in Real-world City Environment
- URL: http://arxiv.org/abs/2410.09604v1
- Date: Sat, 12 Oct 2024 17:49:26 GMT
- Title: EmbodiedCity: A Benchmark Platform for Embodied Agent in Real-world City Environment
- Authors: Chen Gao, Baining Zhao, Weichen Zhang, Jinzhu Mao, Jun Zhang, Zhiheng Zheng, Fanhang Man, Jianjie Fang, Zile Zhou, Jinqiang Cui, Xinlei Chen, Yong Li,
- Abstract summary: Embodied artificial intelligence emphasizes the role of an agent's body in generating human-like behaviors.
In this paper, we construct a benchmark platform for embodied intelligence evaluation in real-world city environments.
- Score: 38.14321677323052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embodied artificial intelligence emphasizes the role of an agent's body in generating human-like behaviors. The recent efforts on EmbodiedAI pay a lot of attention to building up machine learning models to possess perceiving, planning, and acting abilities, thereby enabling real-time interaction with the world. However, most works focus on bounded indoor environments, such as navigation in a room or manipulating a device, with limited exploration of embodying the agents in open-world scenarios. That is, embodied intelligence in the open and outdoor environment is less explored, for which one potential reason is the lack of high-quality simulators, benchmarks, and datasets. To address it, in this paper, we construct a benchmark platform for embodied intelligence evaluation in real-world city environments. Specifically, we first construct a highly realistic 3D simulation environment based on the real buildings, roads, and other elements in a real city. In this environment, we combine historically collected data and simulation algorithms to conduct simulations of pedestrian and vehicle flows with high fidelity. Further, we designed a set of evaluation tasks covering different EmbodiedAI abilities. Moreover, we provide a complete set of input and output interfaces for access, enabling embodied agents to easily take task requirements and current environmental observations as input and then make decisions and obtain performance evaluations. On the one hand, it expands the capability of existing embodied intelligence to higher levels. On the other hand, it has a higher practical value in the real world and can support more potential applications for artificial general intelligence. Based on this platform, we evaluate some popular large language models for embodied intelligence capabilities of different dimensions and difficulties.
Related papers
- WorldSimBench: Towards Video Generation Models as World Simulators [79.69709361730865]
We classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench.
WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks.
Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.
arXiv Detail & Related papers (2024-10-23T17:56:11Z) - V-IRL: Grounding Virtual Intelligence in Real Life [65.87750250364411]
V-IRL is a platform that enables agents to interact with the real world in a virtual yet realistic environment.
Our platform serves as a playground for developing agents that can accomplish various practical tasks.
arXiv Detail & Related papers (2024-02-05T18:59:36Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - ArK: Augmented Reality with Knowledge Interactive Emergent Ability [115.72679420999535]
We develop an infinite agent that learns to transfer knowledge memory from general foundation models to novel domains.
The heart of our approach is an emerging mechanism, dubbed Augmented Reality with Knowledge Inference Interaction (ArK)
We show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes.
arXiv Detail & Related papers (2023-05-01T17:57:01Z) - BEHAVIOR: Benchmark for Everyday Household Activities in Virtual,
Interactive, and Ecological Environments [70.18430114842094]
We introduce BEHAVIOR, a benchmark for embodied AI with 100 activities in simulation.
These activities are designed to be realistic, diverse, and complex.
We include 500 human demonstrations in virtual reality (VR) to serve as the human ground truth.
arXiv Detail & Related papers (2021-08-06T23:36:23Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
Reinforcement learning algorithms have proven to be capable of solving complicated robotics tasks in an end-to-end fashion.
We propose a framework combining the learning of a low-dimensional state representation, from high-dimensional observations coming from the robot's raw sensory readings, with the learning of the optimal policy.
arXiv Detail & Related papers (2021-07-04T15:42:01Z) - Out of the Box: Embodied Navigation in the Real World [45.97756658635314]
We show how to transfer knowledge acquired in simulation into the real world.
We deploy our models on a LoCoBot equipped with a single Intel RealSense camera.
Our experiments indicate that it is possible to achieve satisfying results when deploying the obtained model in the real world.
arXiv Detail & Related papers (2021-05-12T18:00:14Z) - Zero-Shot Reinforcement Learning on Graphs for Autonomous Exploration
Under Uncertainty [6.42522897323111]
We present a framework for self-learning a high-performance exploration policy in a single simulation environment.
We propose a novel approach that uses graph neural networks in conjunction with deep reinforcement learning.
arXiv Detail & Related papers (2021-05-11T02:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.