Society of Medical Simplifiers
- URL: http://arxiv.org/abs/2410.09631v1
- Date: Sat, 12 Oct 2024 19:52:56 GMT
- Title: Society of Medical Simplifiers
- Authors: Chen Lyu, Gabriele Pergola,
- Abstract summary: We introduce the Society of Medical Simplifiers, a novel framework inspired by the "Society of Mind" (SOM) philosophy.
Our approach leverages the strengths of LLMs by assigning five distinct roles, i.e., Layperson, Simplifier, Medical Expert, Language Clarifier, and Redundancy Checker.
Our framework is on par with or outperforms state-of-the-art methods, achieving superior readability and content preservation.
- Score: 7.4751114996742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical text simplification is crucial for making complex biomedical literature more accessible to non-experts. Traditional methods struggle with the specialized terms and jargon of medical texts, lacking the flexibility to adapt the simplification process dynamically. In contrast, recent advancements in large language models (LLMs) present unique opportunities by offering enhanced control over text simplification through iterative refinement and collaboration between specialized agents. In this work, we introduce the Society of Medical Simplifiers, a novel LLM-based framework inspired by the "Society of Mind" (SOM) philosophy. Our approach leverages the strengths of LLMs by assigning five distinct roles, i.e., Layperson, Simplifier, Medical Expert, Language Clarifier, and Redundancy Checker, organized into interaction loops. This structure allows the agents to progressively improve text simplification while maintaining the complexity and accuracy of the original content. Evaluations on the Cochrane text simplification dataset demonstrate that our framework is on par with or outperforms state-of-the-art methods, achieving superior readability and content preservation through controlled simplification processes.
Related papers
- Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
Large language models (LLMs) have shown the potential to generate accurate clinical text summaries, but still struggle with issues regarding grounding and evaluation.
Here, we explore a general mitigation framework using Attribute Structuring (AS), which structures the summary evaluation process.
AS consistently improves the correspondence between human annotations and automated metrics in clinical text summarization.
arXiv Detail & Related papers (2024-03-01T21:59:03Z) - The Sound of Healthcare: Improving Medical Transcription ASR Accuracy
with Large Language Models [0.0]
Large Language Models (LLMs) can enhance the accuracy of Automatic Speech Recognition (ASR) systems in medical transcription.
Our research focuses on improvements in Word Error Rate (WER), Medical Concept WER (MC-WER) for the accurate transcription of essential medical terms, and speaker diarization accuracy.
arXiv Detail & Related papers (2024-02-12T14:01:12Z) - Medical Text Simplification: Optimizing for Readability with
Unlikelihood Training and Reranked Beam Search Decoding [18.06012822620814]
Text simplification has emerged as an increasingly useful application of AI for bridging the communication gap in specialized fields such as medicine.
Despite notable progress, methods in medical simplification sometimes result in the generated text having lower quality and diversity.
We propose a new unlikelihood loss that encourages generation of simpler terms and a reranked beam search decoding method that optimize for simplicity.
arXiv Detail & Related papers (2023-10-17T12:14:03Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Multilingual Simplification of Medical Texts [49.469685530201716]
We introduce MultiCochrane, the first sentence-aligned multilingual text simplification dataset for the medical domain in four languages.
We evaluate fine-tuned and zero-shot models across these languages, with extensive human assessments and analyses.
Although models can now generate viable simplified texts, we identify outstanding challenges that this dataset might be used to address.
arXiv Detail & Related papers (2023-05-21T18:25:07Z) - NapSS: Paragraph-level Medical Text Simplification via Narrative
Prompting and Sentence-matching Summarization [46.772517928718216]
We propose a summarize-then-simplify two-stage strategy, which we call NapSS.
NapSS identifies the relevant content to simplify while ensuring that the original narrative flow is preserved.
Our model achieves significantly better than the seq2seq baseline on an English medical corpus.
arXiv Detail & Related papers (2023-02-11T02:20:25Z) - Readability Controllable Biomedical Document Summarization [17.166794984161964]
We introduce a new task of readability controllable summarization for biomedical documents.
It aims to recognise users' readability demands and generate summaries that better suit their needs.
arXiv Detail & Related papers (2022-10-10T14:03:20Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - Paragraph-level Simplification of Medical Texts [35.650619024498425]
Manual simplification does not scale to the rapidly growing body of biomedical literature.
We introduce a new corpus of parallel texts in English comprising technical and lay summaries of all published evidence pertaining to different clinical topics.
We propose a new metric based on likelihood scores from a masked language model pretrained on scientific texts.
arXiv Detail & Related papers (2021-04-12T18:56:05Z) - Controllable Text Simplification with Explicit Paraphrasing [88.02804405275785]
Text Simplification improves the readability of sentences through several rewriting transformations, such as lexical paraphrasing, deletion, and splitting.
Current simplification systems are predominantly sequence-to-sequence models that are trained end-to-end to perform all these operations simultaneously.
We propose a novel hybrid approach that leverages linguistically-motivated rules for splitting and deletion, and couples them with a neural paraphrasing model to produce varied rewriting styles.
arXiv Detail & Related papers (2020-10-21T13:44:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.