Structured Regularization for Constrained Optimization on the SPD Manifold
- URL: http://arxiv.org/abs/2410.09660v1
- Date: Sat, 12 Oct 2024 22:11:22 GMT
- Title: Structured Regularization for Constrained Optimization on the SPD Manifold
- Authors: Andrew Cheng, Melanie Weber,
- Abstract summary: We introduce a class of structured regularizers, based on symmetric gauge functions, which allow for solving constrained optimization on the SPD manifold with faster unconstrained methods.
We show that our structured regularizers can be chosen to preserve or induce desirable structure, in particular convexity and "difference of convex" structure.
- Score: 1.1126342180866644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matrix-valued optimization tasks, including those involving symmetric positive definite (SPD) matrices, arise in a wide range of applications in machine learning, data science and statistics. Classically, such problems are solved via constrained Euclidean optimization, where the domain is viewed as a Euclidean space and the structure of the matrices (e.g., positive definiteness) enters as constraints. More recently, geometric approaches that leverage parametrizations of the problem as unconstrained tasks on the corresponding matrix manifold have been proposed. While they exhibit algorithmic benefits in many settings, they cannot directly handle additional constraints, such as inequality or sparsity constraints. A remedy comes in the form of constrained Riemannian optimization methods, notably, Riemannian Frank-Wolfe and Projected Gradient Descent. However, both algorithms require potentially expensive subroutines that can introduce computational bottlenecks in practise. To mitigate these shortcomings, we introduce a class of structured regularizers, based on symmetric gauge functions, which allow for solving constrained optimization on the SPD manifold with faster unconstrained methods. We show that our structured regularizers can be chosen to preserve or induce desirable structure, in particular convexity and "difference of convex" structure. We demonstrate the effectiveness of our approach in numerical experiments.
Related papers
- Cons-training tensor networks [2.8834278113855896]
We introduce a novel family of tensor networks, termed.
textitconstrained matrix product states (MPS)
These networks incorporate exactly arbitrary discrete linear constraints, including inequalities, into sparse block structures.
These networks are particularly tailored for modeling distributions with support strictly over the feasible space.
arXiv Detail & Related papers (2024-05-15T00:13:18Z) - Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints [9.301728976515255]
This article provides new practical and theoretical developments for the landing algorithm.
First, the method is extended to the Stiefel manifold.
We also consider variance reduction algorithms when the cost function is an average of many functions.
arXiv Detail & Related papers (2023-03-29T07:36:54Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Simplifying Momentum-based Positive-definite Submanifold Optimization
with Applications to Deep Learning [24.97120654216651]
We show how to solve difficult differential equations with momentum on a submanifold.
We do so by proposing a generalized version of the Riemannian normal coordinates.
We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free $2textnd$orders for deep learning with low precision by using only matrix multiplications.
arXiv Detail & Related papers (2023-02-20T03:31:11Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
We propose an oracle version of the Gaussian smoothing function to overcome the difficulty of non-linearity of manifold non-linearity.
We demonstrate the applicability of our algorithms by results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
arXiv Detail & Related papers (2020-03-25T06:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.