ALLoRA: Adaptive Learning Rate Mitigates LoRA Fatal Flaws
- URL: http://arxiv.org/abs/2410.09692v1
- Date: Sun, 13 Oct 2024 01:57:38 GMT
- Title: ALLoRA: Adaptive Learning Rate Mitigates LoRA Fatal Flaws
- Authors: Hai Huang, Randall Balestriero,
- Abstract summary: Low-Rank Adaptation (LoRA) is the bread and butter of Large Language Model finetuning.
We identify three core limitations to LoRA for finetuning--a setting that employs limited amount of data and training steps.
We find an elegant solution: a Dropout-free, scaling-free, LoRA with Adaptive Learning rate--coined ALLoRA.
- Score: 14.17396731469533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-Rank Adaptation (LoRA) is the bread and butter of Large Language Model (LLM) finetuning. LoRA learns an additive low-rank perturbation, $AB$, of a pretrained matrix parameter $W$ to align the model to a new task or dataset with $W+AB$. We identify three core limitations to LoRA for finetuning--a setting that employs limited amount of data and training steps. First, LoRA employs Dropout to prevent overfitting. We prove that Dropout is only suitable for long training episodes but fails to converge to a reliable regularizer for short training episodes. Second, LoRA's initialization of $B$ at $0$ creates a slow training dynamic between $A$ and $B$. That dynamic is also exacerbated by Dropout that further slows the escape from $0$ for $B$ which is particularly harmful for short training episodes. Third, the scaling factor multiplying each LoRA additive perturbation creates ``short-sighted'' interactions between the LoRA modules of different layers. Motivated by principled analysis of those limitations, we find an elegant solution: a Dropout-free, scaling-free, LoRA with Adaptive Learning rate--coined ALLoRA. By scaling the per sample and per parameter gradients with a coefficient inversely proportional to parameters' $\ell_2$ norm, ALLoRA alleviates those three limitations. As a by-product, ALLoRA removes two hyper-parameters from LoRA: the scaling factor and the dropout rate. Empirical results show that ALLoRA admits better accuracy than LoRA on various settings, including against recent LoRA variants such as Weight-Decomposed Low-Rank Adaptation (DoRA). Ablation studies show our solution is the optimal in a family of weight-dependent / output-dependent approaches on various LLMs including the latest Llama3.
Related papers
- LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
We study how different fine-tuning methods change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties.
We find that full fine-tuning and LoRA yield weight matrices whose singular value decompositions exhibit very different structure.
We conclude by examining why intruder dimensions appear in LoRA fine-tuned models, why they are undesirable, and how their effects can be minimized.
arXiv Detail & Related papers (2024-10-28T17:14:01Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - LoRA Learns Less and Forgets Less [25.09261710396838]
Low-Rank Adaptation (LoRA) is a widely-used parameter-efficient finetuning method for large language models.
We compare the performance of LoRA and full finetuning on two target domains, programming and mathematics.
arXiv Detail & Related papers (2024-05-15T19:27:45Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
We propose ResLoRA, an improved framework of low-rank adaptation (LoRA)
Our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA.
The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-02-28T04:33:20Z) - PeriodicLoRA: Breaking the Low-Rank Bottleneck in LoRA Optimization [39.30090456724925]
Supervised fine-tuning is the most common method to adapt large language models (LLMs) to downstream tasks.
Full fine-tuning requires massive computational resources.
LoRA is one of the most widely used methods, which assumes that the optimization process is essentially low-dimensional.
arXiv Detail & Related papers (2024-02-25T16:43:41Z) - LoRA Training in the NTK Regime has No Spurious Local Minima [46.46792977614938]
Low-rank adaptation (LoRA) has become the standard approach for parameter-efficient fine-tuning of large language models.
We theoretically analyze LoRA fine-tuning in the neural tangent kernel regime with $N$ data points.
arXiv Detail & Related papers (2024-02-19T06:22:09Z) - LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative
Tasks [72.88244322513039]
LoRA employs lightweight modules to customize large language models (LLMs) for each downstream task or domain.
We propose LoRA-Flow, which utilizes dynamic weights to adjust the impact of different LoRAs.
Experiments across six generative tasks demonstrate that our method consistently outperforms baselines with task-level fusion weights.
arXiv Detail & Related papers (2024-02-18T04:41:25Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
We introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA.
Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed Low-Rank Adaptation (DoRA)
DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning.
arXiv Detail & Related papers (2024-02-14T17:59:34Z) - LoRA-FA: Memory-efficient Low-rank Adaptation for Large Language Models
Fine-tuning [19.08716369943138]
We present LoRA-FA, a memory-efficient fine-tuning method that reduces the activation memory without performance degradation and expensive recomputation.
Our results show that LoRA-FA can always achieve close fine-tuning accuracy across different tasks compared to full parameter fine-tuning and LoRA.
arXiv Detail & Related papers (2023-08-07T05:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.