EasyJudge: an Easy-to-use Tool for Comprehensive Response Evaluation of LLMs
- URL: http://arxiv.org/abs/2410.09775v1
- Date: Sun, 13 Oct 2024 08:24:12 GMT
- Title: EasyJudge: an Easy-to-use Tool for Comprehensive Response Evaluation of LLMs
- Authors: Yijie Li, Yuan Sun,
- Abstract summary: This paper presents EasyJudge, a model developed to evaluate significant language model responses.
It is lightweight, precise, efficient, and user-friendly, featuring an intuitive visualization interface for ease of deployment and use.
- Score: 6.179084469089114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a growing trend of employing large language models (LLMs) to judge the quality of other LLMs. Many studies have adopted closed-source models, mainly using GPT-4 as the evaluator. However, due to the closed-source nature of the GPT-4 model, employing it as an evaluator has resulted in issues including transparency, controllability, and cost-effectiveness. Some researchers have turned to using fine-tuned open-source LLMs as evaluators. However, existing open-source evaluation LLMs generally lack a user-friendly visualization tool, and they have not been optimized for accelerated model inference, which causes inconvenience for researchers with limited resources and those working across different fields. This paper presents EasyJudge, a model developed to evaluate significant language model responses. It is lightweight, precise, efficient, and user-friendly, featuring an intuitive visualization interface for ease of deployment and use. EasyJudge uses detailed datasets and refined prompts for model optimization, achieving strong consistency with human and proprietary model evaluations. The model optimized with quantitative methods enables EasyJudge to run efficiently on consumer-grade GPUs or even CPUs. We also provide detailed analysis and case studies to further reveal the potential of our method.
Related papers
- A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Automated Text Scoring in the Age of Generative AI for the GPU-poor [49.1574468325115]
We analyze the performance and efficiency of open-source, small-scale generative language models for automated text scoring.
Results show that GLMs can be fine-tuned to achieve adequate, though not state-of-the-art, performance.
arXiv Detail & Related papers (2024-07-02T01:17:01Z) - Open Source Language Models Can Provide Feedback: Evaluating LLMs' Ability to Help Students Using GPT-4-As-A-Judge [4.981275578987307]
Large language models (LLMs) have shown great potential for the automatic generation of feedback in a wide range of computing contexts.
However, concerns have been voiced around the privacy and ethical implications of sending student work to proprietary models.
This has sparked considerable interest in the use of open source LLMs in education, but the quality of the feedback that such open models can produce remains understudied.
arXiv Detail & Related papers (2024-05-08T17:57:39Z) - Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry [2.4244694855867275]
Large Language Models (LLMs) have emerged as powerful tools for extracting valuable insights from vast amounts of textual data.
In this study, we conduct a comparative analysis of LLMs for the extraction of travel customer needs from TripAdvisor posts.
Our findings highlight the efficacy of opensource LLMs, particularly Mistral 7B, in achieving comparable performance to larger closed models.
arXiv Detail & Related papers (2024-04-27T18:28:10Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTL is a novel post-processing framework that operates agnostically across tasks and models.
It identifies biases, proposes resolutions, and guides the model to self-debias its outputs.
This approach minimizes computational costs and preserves model performance.
arXiv Detail & Related papers (2024-03-01T00:02:37Z) - Scaling Down to Scale Up: A Cost-Benefit Analysis of Replacing OpenAI's LLM with Open Source SLMs in Production [3.41402911469979]
Many companies use large language models (LLMs) offered as a service, like OpenAI's GPT-4, to create AI-enabled product experiences.
At the same time, a flurry of open-source small language models (SLMs) has been made available for commercial use.
This paper presents a systematic evaluation methodology and a characterization of modern open-source SLMs.
arXiv Detail & Related papers (2023-12-20T19:27:59Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language
Feedback [78.60644407028022]
We introduce MINT, a benchmark that evaluates large language models' ability to solve tasks with multi-turn interactions.
LLMs generally benefit from tools and language feedback, with performance gains of 1-8% for each turn of tool use.
LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities.
arXiv Detail & Related papers (2023-09-19T15:25:42Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
We propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller task-oriented dialogue model.
This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models.
Our approach outperforms previous state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2023-06-16T13:04:56Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checker is a framework comprising a set of plug-and-play modules that facilitate fact-checking.
This framework provides a fast and efficient way to construct fact-checking systems in low-resource environments.
arXiv Detail & Related papers (2023-05-24T01:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.