Single Ground Truth Is Not Enough: Adding Flexibility to Aspect-Based Sentiment Analysis Evaluation
- URL: http://arxiv.org/abs/2410.09807v2
- Date: Wed, 12 Feb 2025 04:24:19 GMT
- Title: Single Ground Truth Is Not Enough: Adding Flexibility to Aspect-Based Sentiment Analysis Evaluation
- Authors: Soyoung Yang, Hojun Cho, Jiyoung Lee, Sohee Yoon, Edward Choi, Jaegul Choo, Won Ik Cho,
- Abstract summary: Aspect-based sentiment analysis (ABSA) is a challenging task.
Traditional evaluation methods often constrain ground truths (GT) to a single term.
We propose a novel and fully automated pipeline that expands existing evaluation sets by adding alternative valid terms for aspect and opinion.
- Score: 41.66053021998106
- License:
- Abstract: Aspect-based sentiment analysis (ABSA) is a challenging task of extracting sentiments along with their corresponding aspects and opinion terms from the text. The inherent subjectivity of span annotation makes variability in the surface forms of extracted terms, complicating the evaluation process. Traditional evaluation methods often constrain ground truths (GT) to a single term, potentially misrepresenting the accuracy of semantically valid predictions that differ in surface form. To address this limitation, we propose a novel and fully automated pipeline that expands existing evaluation sets by adding alternative valid terms for aspect and opinion. Our approach facilitates an equitable assessment of language models by accommodating multiple-answer candidates, resulting in enhanced human agreement compared to single-answer test sets (achieving up to a 10\%p improvement in Kendall's Tau score). Experimental results demonstrate that our expanded evaluation set helps uncover the capabilities of large language models (LLMs) in ABSA tasks, which is concealed by the single-answer GT sets. Consequently, our work contributes to the development of a flexible evaluation framework for ABSA by embracing diverse surface forms to span extraction tasks in a cost-effective and reproducible manner. Our code and dataset is open at https://github.com/dudrrm/zoom-in-n-out-absa.
Related papers
- A Hybrid Approach To Aspect Based Sentiment Analysis Using Transfer Learning [3.30307212568497]
We propose a hybrid approach for Aspect Based Sentiment Analysis using transfer learning.
The approach focuses on generating weakly-supervised annotations by exploiting the strengths of both large language models (LLM) and traditional syntactic dependencies.
arXiv Detail & Related papers (2024-03-25T23:02:33Z) - Exploiting Adaptive Contextual Masking for Aspect-Based Sentiment
Analysis [0.6827423171182154]
Aspect-Based Sentiment Analysis (ABSA) is a fine-grained linguistics problem that entails the extraction of multifaceted aspects, opinions, and sentiments from the given text.
We present adaptive masking methods that remove irrelevant tokens based on context to assist in Aspect Term Extraction and Aspect Sentiment Classification subtasks of ABSA.
arXiv Detail & Related papers (2024-02-21T11:33:09Z) - SOUL: Towards Sentiment and Opinion Understanding of Language [96.74878032417054]
We propose a new task called Sentiment and Opinion Understanding of Language (SOUL)
SOUL aims to evaluate sentiment understanding through two subtasks: Review (RC) and Justification Generation (JG)
arXiv Detail & Related papers (2023-10-27T06:48:48Z) - Incorporating Dynamic Semantics into Pre-Trained Language Model for
Aspect-based Sentiment Analysis [67.41078214475341]
We propose Dynamic Re-weighting BERT (DR-BERT) to learn dynamic aspect-oriented semantics for ABSA.
Specifically, we first take the Stack-BERT layers as a primary encoder to grasp the overall semantic of the sentence.
We then fine-tune it by incorporating a lightweight Dynamic Re-weighting Adapter (DRA)
arXiv Detail & Related papers (2022-03-30T14:48:46Z) - BERT-ASC: Auxiliary-Sentence Construction for Implicit Aspect Learning in Sentiment Analysis [4.522719296659495]
This paper proposes a unified framework to address aspect categorization and aspect-based sentiment subtasks.
We introduce a mechanism to construct an auxiliary-sentence for the implicit aspect using the corpus's semantic information.
We then encourage BERT to learn aspect-specific representation in response to this auxiliary-sentence, not the aspect itself.
arXiv Detail & Related papers (2022-03-22T13:12:27Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - Improving BERT Performance for Aspect-Based Sentiment Analysis [3.5493798890908104]
Aspect-Based Sentiment Analysis (ABSA) studies the consumer opinion on the market products.
It involves examining the type of sentiments as well as sentiment targets expressed in product reviews.
We show that applying the proposed models eliminates the need for further training of the BERT model.
arXiv Detail & Related papers (2020-10-22T13:52:18Z) - A Revised Generative Evaluation of Visual Dialogue [80.17353102854405]
We propose a revised evaluation scheme for the VisDial dataset.
We measure consensus between answers generated by the model and a set of relevant answers.
We release these sets and code for the revised evaluation scheme as DenseVisDial.
arXiv Detail & Related papers (2020-04-20T13:26:45Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z) - Latent Opinions Transfer Network for Target-Oriented Opinion Words
Extraction [63.70885228396077]
We propose a novel model to transfer opinions knowledge from resource-rich review sentiment classification datasets to low-resource task TOWE.
Our model achieves better performance compared to other state-of-the-art methods and significantly outperforms the base model without transferring opinions knowledge.
arXiv Detail & Related papers (2020-01-07T11:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.