AuthFace: Towards Authentic Blind Face Restoration with Face-oriented Generative Diffusion Prior
- URL: http://arxiv.org/abs/2410.09864v1
- Date: Sun, 13 Oct 2024 14:56:13 GMT
- Title: AuthFace: Towards Authentic Blind Face Restoration with Face-oriented Generative Diffusion Prior
- Authors: Guoqiang Liang, Qingnan Fan, Bingtao Fu, Jinwei Chen, Hong Gu, Lin Wang,
- Abstract summary: Blind face restoration (BFR) is a fundamental and challenging problem in computer vision.
Recent research endeavors rely on facial image priors from the powerful pretrained text-to-image (T2I) diffusion models.
We propose AuthFace, which achieves highly authentic face restoration results by exploring a face-oriented generative diffusion prior.
- Score: 13.27748226506837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blind face restoration (BFR) is a fundamental and challenging problem in computer vision. To faithfully restore high-quality (HQ) photos from poor-quality ones, recent research endeavors predominantly rely on facial image priors from the powerful pretrained text-to-image (T2I) diffusion models. However, such priors often lead to the incorrect generation of non-facial features and insufficient facial details, thus rendering them less practical for real-world applications. In this paper, we propose a novel framework, namely AuthFace that achieves highly authentic face restoration results by exploring a face-oriented generative diffusion prior. To learn such a prior, we first collect a dataset of 1.5K high-quality images, with resolutions exceeding 8K, captured by professional photographers. Based on the dataset, we then introduce a novel face-oriented restoration-tuning pipeline that fine-tunes a pretrained T2I model. Identifying key criteria of quality-first and photography-guided annotation, we involve the retouching and reviewing process under the guidance of photographers for high-quality images that show rich facial features. The photography-guided annotation system fully explores the potential of these high-quality photographic images. In this way, the potent natural image priors from pretrained T2I diffusion models can be subtly harnessed, specifically enhancing their capability in facial detail restoration. Moreover, to minimize artifacts in critical facial areas, such as eyes and mouth, we propose a time-aware latent facial feature loss to learn the authentic face restoration process. Extensive experiments on the synthetic and real-world BFR datasets demonstrate the superiority of our approach.
Related papers
- Overcoming False Illusions in Real-World Face Restoration with Multi-Modal Guided Diffusion Model [55.46927355649013]
We introduce a novel Multi-modal Guided Real-World Face Restoration technique.
MGFR can mitigate the generation of false facial attributes and identities.
We present the Reface-HQ dataset, comprising over 23,000 high-resolution facial images across 5,000 identities.
arXiv Detail & Related papers (2024-10-05T13:46:56Z) - Towards Real-World Blind Face Restoration with Generative Diffusion Prior [69.84480964328465]
Blind face restoration is an important task in computer vision and has gained significant attention due to its wide-range applications.
We propose BFRffusion which is thoughtfully designed to effectively extract features from low-quality face images.
We also build a privacy-preserving face dataset called PFHQ with balanced attributes like race, gender, and age.
arXiv Detail & Related papers (2023-12-25T14:16:24Z) - Effective Adapter for Face Recognition in the Wild [72.75516495170199]
We tackle the challenge of face recognition in the wild, where images often suffer from low quality and real-world distortions.
Traditional approaches-either training models directly on degraded images or their enhanced counterparts using face restoration techniques-have proven ineffective.
We propose an effective adapter for augmenting existing face recognition models trained on high-quality facial datasets.
arXiv Detail & Related papers (2023-12-04T08:55:46Z) - HyperReenact: One-Shot Reenactment via Jointly Learning to Refine and
Retarget Faces [47.27033282706179]
We present our method for neural face reenactment, called HyperReenact, that aims to generate realistic talking head images of a source identity.
Our method operates under the one-shot setting (i.e., using a single source frame) and allows for cross-subject reenactment, without requiring subject-specific fine-tuning.
We compare our method both quantitatively and qualitatively against several state-of-the-art techniques on the standard benchmarks of VoxCeleb1 and VoxCeleb2.
arXiv Detail & Related papers (2023-07-20T11:59:42Z) - A Survey of Deep Face Restoration: Denoise, Super-Resolution, Deblur,
Artifact Removal [177.21001709272144]
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images.
This paper comprehensively surveys recent advances in deep learning techniques for face restoration.
arXiv Detail & Related papers (2022-11-05T07:08:15Z) - Multi-Prior Learning via Neural Architecture Search for Blind Face
Restoration [61.27907052910136]
Blind Face Restoration (BFR) aims to recover high-quality face images from low-quality ones.
Current methods still suffer from two major difficulties: 1) how to derive a powerful network architecture without extensive hand tuning; 2) how to capture complementary information from multiple facial priors in one network to improve restoration performance.
We propose a Face Restoration Searching Network (FRSNet) to adaptively search the suitable feature extraction architecture within our specified search space.
arXiv Detail & Related papers (2022-06-28T12:29:53Z) - Enhancing Quality of Pose-varied Face Restoration with Local Weak
Feature Sensing and GAN Prior [29.17397958948725]
We propose a well-designed blind face restoration network with generative facial prior.
Our model performs superior to the prior art for face restoration and face super-resolution tasks.
arXiv Detail & Related papers (2022-05-28T09:23:48Z) - Joint Face Image Restoration and Frontalization for Recognition [79.78729632975744]
In real-world scenarios, many factors may harm face recognition performance, e.g., large pose, bad illumination,low resolution, blur and noise.
Previous efforts usually first restore the low-quality faces to high-quality ones and then perform face recognition.
We propose an Multi-Degradation Face Restoration model to restore frontalized high-quality faces from the given low-quality ones.
arXiv Detail & Related papers (2021-05-12T03:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.