Optimizing Waste Management with Advanced Object Detection for Garbage Classification
- URL: http://arxiv.org/abs/2410.09975v2
- Date: Tue, 15 Oct 2024 02:13:09 GMT
- Title: Optimizing Waste Management with Advanced Object Detection for Garbage Classification
- Authors: Everest Z. Kuang, Kushal Raj Bhandari, Jianxi Gao,
- Abstract summary: This paper reviews the implementation of AI models for classifying trash through object detection.
The study demonstrates how YOLO V5 can effectively identify various types of waste, including plastic, paper, glass, metal, cardboard, and biodegradables.
- Score: 1.3499500088995462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Garbage production and littering are persistent global issues that pose significant environmental challenges. Despite large-scale efforts to manage waste through collection and sorting, existing approaches remain inefficient, leading to inadequate recycling and disposal. Therefore, developing advanced AI-based systems is less labor intensive approach for addressing the growing waste problem more effectively. These models can be applied to sorting systems or possibly waste collection robots that may produced in the future. AI models have grown significantly at identifying objects through object detection. This paper reviews the implementation of AI models for classifying trash through object detection, specifically focusing on using YOLO V5 for training and testing. The study demonstrates how YOLO V5 can effectively identify various types of waste, including plastic, paper, glass, metal, cardboard, and biodegradables.
Related papers
- Advancing Recycling Efficiency: A Comparative Analysis of Deep Learning Models in Waste Classification [0.0]
The research tackles the pressing issue of waste classification for recycling by analyzing various deep learning models.
The results indicate the method significantly boosts accuracy in complex waste categories.
The research paves the way for future advancements in multi-category waste recycling.
arXiv Detail & Related papers (2024-11-05T03:44:54Z) - WasteGAN: Data Augmentation for Robotic Waste Sorting through Generative Adversarial Networks [7.775894876221921]
We introduce a data augmentation method based on a novel GAN architecture called wasteGAN.
The proposed method allows to increase the performance of semantic segmentation models, starting from a very limited bunch of labeled examples.
We then leverage the higher-quality segmentation masks predicted from models trained on the wasteGAN synthetic data to compute semantic-aware grasp poses.
arXiv Detail & Related papers (2024-09-25T15:04:21Z) - SpectralWaste Dataset: Multimodal Data for Waste Sorting Automation [46.178512739789426]
We present SpectralWaste, the first dataset collected from an operational plastic waste sorting facility.
This dataset contains labels for several categories of objects that commonly appear in sorting plants.
We propose a pipeline employing different object segmentation architectures and evaluate the alternatives on our dataset.
arXiv Detail & Related papers (2024-03-26T18:39:38Z) - Implementing Edge Based Object Detection For Microplastic Debris [0.0]
Plastic has imbibed itself as an indispensable part of our day to day activities.
Plastic debris levels continue to rise with the accumulation of waste in garbage patches in landfills.
The project has been able to produce workable models that can perform on time detection of sampled images.
arXiv Detail & Related papers (2023-07-30T17:55:03Z) - Deteksi Sampah di Permukaan dan Dalam Perairan pada Objek Video dengan
Metode Robust and Efficient Post-Processing dan Tubelet-Level Bounding Box
Linking [0.0]
This paper provides an explanation of the methods that can be applied to perform video object detection in an automated trash-collecting robot.
The study utilizes the YOLOv5 model and the Robust & Efficient Post Processing (REPP) method, along with tubelet-level bounding box linking on the FloW and Roboflow datasets.
The results show that the post-processing stage and tubelet-level bounding box linking can improve the quality of detection, achieving approximately 3% better performance compared to YOLOv5 alone.
arXiv Detail & Related papers (2023-07-14T04:04:15Z) - PLASTIC: Improving Input and Label Plasticity for Sample Efficient
Reinforcement Learning [54.409634256153154]
In Reinforcement Learning (RL), enhancing sample efficiency is crucial.
In principle, off-policy RL algorithms can improve sample efficiency by allowing multiple updates per environment interaction.
Our study investigates the underlying causes of this phenomenon by dividing plasticity into two aspects.
arXiv Detail & Related papers (2023-06-19T06:14:51Z) - VisDA 2022 Challenge: Domain Adaptation for Industrial Waste Sorting [61.52419223232737]
In industrial waste sorting, one of the biggest challenges is the extreme diversity of the input stream.
We present the VisDA 2022 Challenge on Domain Adaptation for Industrial Waste Sorting.
arXiv Detail & Related papers (2023-03-26T21:38:38Z) - Application of the YOLOv5 Model for the Detection of Microobjects in the
Marine Environment [101.18253437732933]
The efficiency of using the YOLOV5 machine learning model for solving the problem of automatic de-tection and recognition of micro-objects in the marine environment is studied.
arXiv Detail & Related papers (2022-11-28T10:58:50Z) - IoT-based Route Recommendation for an Intelligent Waste Management
System [61.04795047897888]
This work proposes an intelligent approach to route recommendation in an IoT-enabled waste management system given spatial constraints.
Our solution is based on a multiple-level decision-making process in which bins' status and coordinates are taken into account.
arXiv Detail & Related papers (2022-01-01T12:36:22Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
We present the first in-the-wild industrial-grade waste detection and segmentation dataset, ZeroWaste.
This dataset contains over1800fully segmented video frames collected from a real waste sorting plant.
We show that state-of-the-art segmentation methods struggle to correctly detect and classify target objects.
arXiv Detail & Related papers (2021-06-04T22:17:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.