WormKAN: Are KAN Effective for Identifying and Tracking Concept Drift in Time Series?
- URL: http://arxiv.org/abs/2410.10041v2
- Date: Fri, 13 Dec 2024 00:23:09 GMT
- Title: WormKAN: Are KAN Effective for Identifying and Tracking Concept Drift in Time Series?
- Authors: Kunpeng Xu, Lifei Chen, Shengrui Wang,
- Abstract summary: WormKAN is a concept-aware KAN-based model to address concept drift in co-evolving time series.
WormKAN consists of three key components: Patch Normalization, Temporal Representation Module, and Concept Dynamics.
- Score: 6.4314326272535896
- License:
- Abstract: Dynamic concepts in time series are crucial for understanding complex systems such as financial markets, healthcare, and online activity logs. These concepts help reveal structures and behaviors in sequential data for better decision-making and forecasting. However, existing models often struggle to detect and track concept drift due to limitations in interpretability and adaptability. To address this challenge, inspired by the flexibility of the recent Kolmogorov-Arnold Network (KAN), we propose WormKAN, a concept-aware KAN-based model to address concept drift in co-evolving time series. WormKAN consists of three key components: Patch Normalization, Temporal Representation Module, and Concept Dynamics. Patch normalization processes co-evolving time series into patches, treating them as fundamental modeling units to capture local dependencies while ensuring consistent scaling. The temporal representation module learns robust latent representations by leveraging a KAN-based autoencoder, complemented by a smoothness constraint, to uncover inter-patch correlations. Concept dynamics identifies and tracks dynamic transitions, revealing structural shifts in the time series through concept identification and drift detection. These transitions, akin to passing through a \textit{wormhole}, are identified by abrupt changes in the latent space. Experiments show that KAN and KAN-based models (WormKAN) effectively segment time series into meaningful concepts, enhancing the identification and tracking of concept drift.
Related papers
- Community-Aware Temporal Walks: Parameter-Free Representation Learning on Continuous-Time Dynamic Graphs [3.833708891059351]
Community-aware Temporal Walks (CTWalks) is a novel framework for representation learning on continuous-time dynamic graphs.
CTWalks integrates a community-based parameter-free temporal walk sampling mechanism, an anonymization strategy enriched with community labels, and an encoding process.
Experiments on benchmark datasets demonstrate that CTWalks outperforms established methods in temporal link prediction tasks.
arXiv Detail & Related papers (2025-01-21T04:16:46Z) - CORAL: Concept Drift Representation Learning for Co-evolving Time-series [6.4314326272535896]
Concept drift affects the reliability and accuracy of conventional analysis models.
This paper presents CORAL, a method that models time series as an evolving ecosystem to learn representations of concept drift.
arXiv Detail & Related papers (2025-01-02T15:09:00Z) - Wormhole: Concept-Aware Deep Representation Learning for Co-Evolving Sequences [6.4314326272535896]
This paper introduces Wormhole, a novel deep representation learning framework that is concept-aware and designed for co-evolving time sequences.
concept transitions are detected by identifying abrupt changes in the latent space, signifying a shift to new behavior.
This novel mechanism accurately discerns concepts within co-evolving sequences and pinpoints the exact locations of these wormholes.
arXiv Detail & Related papers (2024-09-20T19:11:39Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.
We introduce a novel quantization framework that includes three strategies.
This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
We aim to learn an implicit motion field parameterized by a neural network to predict the movement of novel points within same domain.
We exploit intrinsic regularization provided by SIREN, and modify the input layer to produce atemporally smooth motion field.
Our experiments assess the model's performance in predicting unseen point trajectories and its application in temporal mesh alignment with deformation.
arXiv Detail & Related papers (2024-06-05T21:02:10Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - A Dynamic Temporal Self-attention Graph Convolutional Network for
Traffic Prediction [7.23135508361981]
This paper proposes a temporal self-attention graph convolutional network (DT-SGN) model which considers the adjacent matrix as a trainable attention score matrix.
Experiments demonstrate the superiority of our method over state-of-art model-driven model and data-driven models on real-world traffic datasets.
arXiv Detail & Related papers (2023-02-21T03:51:52Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition.
We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors.
Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information.
arXiv Detail & Related papers (2022-03-31T02:45:24Z) - Modeling Temporal Concept Receptive Field Dynamically for Untrimmed
Video Analysis [105.06166692486674]
We study temporal concept receptive field of concept-based event representation.
We introduce temporal dynamic convolution (TDC) to give stronger flexibility to concept-based event analytics.
Different coefficients can generate appropriate and accurate temporal concept receptive field size according to input videos.
arXiv Detail & Related papers (2021-11-23T04:59:48Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.