REHRSeg: Unleashing the Power of Self-Supervised Super-Resolution for Resource-Efficient 3D MRI Segmentation
- URL: http://arxiv.org/abs/2410.10097v1
- Date: Mon, 14 Oct 2024 02:28:18 GMT
- Title: REHRSeg: Unleashing the Power of Self-Supervised Super-Resolution for Resource-Efficient 3D MRI Segmentation
- Authors: Zhiyun Song, Yinjie Zhao, Xiaomin Li, Manman Fei, Xiangyu Zhao, Mengjun Liu, Cunjian Chen, Chung-Hsing Yeh, Qian Wang, Guoyan Zheng, Songtao Ai, Lichi Zhang,
- Abstract summary: High-resolution (HR) 3D magnetic resonance imaging (MRI) can provide detailed anatomical structural information.
Due to the high demands of acquisition device, collection of HR images with their annotations is always impractical in clinical scenarios.
We propose a novel Resource-Efficient High-Resolution framework (REHRSeg) to address the challenges in real-world applications.
- Score: 22.493810089353083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-resolution (HR) 3D magnetic resonance imaging (MRI) can provide detailed anatomical structural information, enabling precise segmentation of regions of interest for various medical image analysis tasks. Due to the high demands of acquisition device, collection of HR images with their annotations is always impractical in clinical scenarios. Consequently, segmentation results based on low-resolution (LR) images with large slice thickness are often unsatisfactory for subsequent tasks. In this paper, we propose a novel Resource-Efficient High-Resolution Segmentation framework (REHRSeg) to address the above-mentioned challenges in real-world applications, which can achieve HR segmentation while only employing the LR images as input. REHRSeg is designed to leverage self-supervised super-resolution (self-SR) to provide pseudo supervision, therefore the relatively easier-to-acquire LR annotated images generated by 2D scanning protocols can be directly used for model training. The main contribution to ensure the effectiveness in self-SR for enhancing segmentation is three-fold: (1) We mitigate the data scarcity problem in the medical field by using pseudo-data for training the segmentation model. (2) We design an uncertainty-aware super-resolution (UASR) head in self-SR to raise the awareness of segmentation uncertainty as commonly appeared on the ROI boundaries. (3) We align the spatial features for self-SR and segmentation through structural knowledge distillation to enable a better capture of region correlations. Experimental results demonstrate that REHRSeg achieves high-quality HR segmentation without intensive supervision, while also significantly improving the baseline performance for LR segmentation.
Related papers
- Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields [19.71033340093199]
We propose a novel architecture, Perspective+ Unet, to overcome limitations in medical image segmentation.
The framework incorporates an efficient non-local transformer block, named ENLTB, which utilizes kernel function approximation for effective long-range dependency capture.
Experimental results on the ACDC and datasets demonstrate the effectiveness of our proposed Perspective+ Unet.
arXiv Detail & Related papers (2024-06-20T07:17:39Z) - Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
In clinical practice, 2D magnetic resonance (MR) sequences are widely adopted. While individual 2D slices can be stacked to form a 3D volume, the relatively large slice spacing can pose challenges for visualization and subsequent analysis tasks.
To reduce slice spacing, deep-learning-based super-resolution techniques are widely investigated.
Most current solutions require a substantial number of paired high-resolution and low-resolution images for supervised training, which are typically unavailable in real-world scenarios.
arXiv Detail & Related papers (2024-06-10T02:20:26Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - TransMRSR: Transformer-based Self-Distilled Generative Prior for Brain
MRI Super-Resolution [18.201980634509553]
We propose a novel two-stage network for brain MRI SR named TransMRSR.
TransMRSR consists of three modules: the shallow local feature extraction, the deep non-local feature capture, and the HR image reconstruction.
Our method achieves superior performance to other SSIR methods on both public and private datasets.
arXiv Detail & Related papers (2023-06-11T12:41:23Z) - Super-Resolution Based Patch-Free 3D Image Segmentation with
High-Frequency Guidance [20.86089285980103]
High resolution (HR) 3D images are widely used nowadays, such as medical images like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT)
arXiv Detail & Related papers (2022-10-26T11:46:08Z) - Spatial Attention-based Implicit Neural Representation for Arbitrary
Reduction of MRI Slice Spacing [17.16588480746507]
We propose a Spatial Attention-based Implicit Neural Representation (SA-INR) network for arbitrary reduction of MR inter-slice spacing.
The SA-INR can reconstruct the MR image with arbitrary inter-slice spacing by continuously sampling the coordinates in 3D space.
We evaluate our method on the public HCP-1200 dataset and the clinical knee MR dataset to demonstrate its superiority over other existing methods.
arXiv Detail & Related papers (2022-05-23T14:36:59Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image.
Previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image.
We propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image.
arXiv Detail & Related papers (2022-02-12T15:37:13Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
The thick-slice magnetic resonance (MR) images are often structurally blurred in coronal and sagittal views.
Deep learning has shown great potential to re-construct the high-resolution (HR) thin-slice MR images from those low-resolution (LR) cases.
We propose a novel Two-stage Self-supervised Cycle-consistency Network (TSCNet) for MR slice reconstruction.
arXiv Detail & Related papers (2021-06-29T13:29:18Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
We consider the single image super-resolution (SISR) problem, where a high-resolution (HR) image is generated based on a low-resolution (LR) input.
Most methods along this line rely on a predefined single-LR-single-HR mapping, which is not flexible enough for the SISR task.
We propose best-buddy GANs (Beby-GAN) for rich-detail SISR. Relaxing the immutable one-to-one constraint, we allow the estimated patches to dynamically seek the best supervision.
arXiv Detail & Related papers (2021-03-29T02:58:27Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.