Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models
- URL: http://arxiv.org/abs/2410.10114v2
- Date: Wed, 16 Oct 2024 12:30:53 GMT
- Title: Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models
- Authors: Jun Luo, Chen Chen, Shandong Wu,
- Abstract summary: We propose a novel framework that personalizes the prompt learning process through the lens of Mixture of Experts (MoE)
pFedMoAP implements a local attention-based gating network that learns to generate enhanced text features for better alignment with local image data on the client.
The results show that pFedMoAP consistently outperforms the state-of-the-art alternatives, underscoring its efficacy in personalizing prompt learning for CLIP.
- Score: 7.810284483002312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt learning for pre-trained Vision-Language Models (VLMs) like CLIP has demonstrated potent applicability across diverse downstream tasks. This lightweight approach has quickly gained traction from federated learning (FL) researchers who seek to efficiently adapt VLMs to heterogeneous scenarios. However, current federated prompt learning methods are habitually restricted to the traditional FL paradigm, where the participating clients are generally only allowed to download a single globally aggregated model from the server. While justifiable for training full-sized models under federated settings, in this work, we argue that this paradigm is ill-suited for lightweight prompts. By facilitating the clients to download multiple pre-aggregated prompts as fixed non-local experts, we propose Personalized Federated Mixture of Adaptive Prompts (pFedMoAP), a novel FL framework that personalizes the prompt learning process through the lens of Mixture of Experts (MoE). pFedMoAP implements a local attention-based gating network that learns to generate enhanced text features for better alignment with local image data on the client, benefiting from both local and downloaded non-local adaptive prompt experts. The non-local experts are sparsely selected from a server-maintained pool, fostering collaborative learning across clients. To evaluate the proposed algorithm, we conduct extensive experiments across 9 datasets under various heterogeneous federated settings. The results show that pFedMoAP consistently outperforms the state-of-the-art alternatives, underscoring its efficacy in personalizing prompt learning for CLIP within the federated learning paradigm.
Related papers
- Global and Local Prompts Cooperation via Optimal Transport for Federated Learning [13.652593797756774]
We present Federated Prompts Cooperation via Optimal Transport (FedOTP), which introduces efficient collaborative prompt learning strategies to capture diverse category traits on a per-client basis.
Specifically, for each client, we learn a global prompt to extract consensus knowledge among clients, and a local prompt to capture client-specific category characteristics.
Unbalanced Optimal Transport is then employed to align local visual features with these prompts, striking a balance between global consensus and local personalization.
arXiv Detail & Related papers (2024-02-29T11:43:04Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformers (ViT) and Visual Prompt Tuning (VPT) achieve state-of-the-art performance with improved efficiency in various computer vision tasks.
We present a novel algorithm, SGPT, that integrates Generalized FL (GFL) and Personalized FL (PFL) approaches by employing a unique combination of both shared and group-specific prompts.
arXiv Detail & Related papers (2023-10-27T17:22:09Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
We introduce a new perspective on personalized federated learning through Amortized Bayesian Meta-Learning.
Specifically, we propose a novel algorithm called emphFedABML, which employs hierarchical variational inference across clients.
Our theoretical analysis provides an upper bound on the average generalization error and guarantees the generalization performance on unseen data.
arXiv Detail & Related papers (2023-07-05T11:58:58Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETs is a novel solution by using a Mixture-of-Experts (MoE) framework within a Federated Learning (FL) setup.
Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s)
Our approach can improve accuracy up to 18% in state of the art FL settings, while maintaining competitive zero-shot performance.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
We propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL.
Dis-PFL employs personalized sparse masks to customize sparse local models on the edge.
We demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities.
arXiv Detail & Related papers (2022-06-01T02:20:57Z) - To Federate or Not To Federate: Incentivizing Client Participation in
Federated Learning [22.3101738137465]
Federated learning (FL) facilitates collaboration between a group of clients who seek to train a common machine learning model.
In this paper, we propose an algorithm called IncFL that explicitly maximizes the fraction of clients who are incentivized to use the global model.
arXiv Detail & Related papers (2022-05-30T04:03:31Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.