Improved Regret Bound for Safe Reinforcement Learning via Tighter Cost Pessimism and Reward Optimism
- URL: http://arxiv.org/abs/2410.10158v1
- Date: Mon, 14 Oct 2024 04:51:06 GMT
- Title: Improved Regret Bound for Safe Reinforcement Learning via Tighter Cost Pessimism and Reward Optimism
- Authors: Kihyun Yu, Duksang Lee, William Overman, Dabeen Lee,
- Abstract summary: We propose a model-based algorithm based on novel cost and reward function estimators.
Our algorithm achieves a regret upper bound of $widetildemathcalO((bar C - bar C_b)-1H2.5 SsqrtAK)$ where $bar C$ is the cost budget for an episode.
- Score: 1.4999444543328293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the safe reinforcement learning problem formulated as an episodic finite-horizon tabular constrained Markov decision process with an unknown transition kernel and stochastic reward and cost functions. We propose a model-based algorithm based on novel cost and reward function estimators that provide tighter cost pessimism and reward optimism. While guaranteeing no constraint violation in every episode, our algorithm achieves a regret upper bound of $\widetilde{\mathcal{O}}((\bar C - \bar C_b)^{-1}H^{2.5} S\sqrt{AK})$ where $\bar C$ is the cost budget for an episode, $\bar C_b$ is the expected cost under a safe baseline policy over an episode, $H$ is the horizon, and $S$, $A$ and $K$ are the number of states, actions, and episodes, respectively. This improves upon the best-known regret upper bound, and when $\bar C- \bar C_b=\Omega(H)$, it nearly matches the regret lower bound of $\Omega(H^{1.5}\sqrt{SAK})$. We deduce our cost and reward function estimators via a Bellman-type law of total variance to obtain tight bounds on the expected sum of the variances of value function estimates. This leads to a tighter dependence on the horizon in the function estimators. We also present numerical results to demonstrate the computational effectiveness of our proposed framework.
Related papers
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR [58.40575099910538]
We study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance $tau$.
We show the minimax CVaR regret rate is $Omega(sqrttau-1AK)$, where $A$ is the number of actions and $K$ is the number of episodes.
We show that our algorithm achieves the optimal regret of $widetilde O(tau-1sqrtSAK)$ under a continuity assumption and in general attains a near
arXiv Detail & Related papers (2023-02-07T02:22:31Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - Stochastic Shortest Path: Minimax, Parameter-Free and Towards
Horizon-Free Regret [144.6358229217845]
We study the problem of learning in the shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state.
We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus.
We prove that EB-SSP achieves the minimax regret rate $widetildeO(B_star sqrtS A K)$, where $K$ is the number of episodes, $S$ is the number of states, $A$
arXiv Detail & Related papers (2021-04-22T17:20:48Z) - Minimax Regret for Stochastic Shortest Path [63.45407095296692]
We study the Shortest Path (SSP) problem in which an agent has to reach a goal state in minimum total expected cost.
We show that the minimax regret for this setting is $widetilde O(B_star sqrt|S| |A| K)$ where $B_star$ is a bound on the expected cost of the optimal policy from any state.
Our algorithm runs in-time per episode, and is based on a novel reduction to reinforcement learning in finite-horizon MDPs.
arXiv Detail & Related papers (2021-03-24T10:11:49Z) - Minimax Regret for Stochastic Shortest Path with Adversarial Costs and
Known Transition [37.6975819766632]
We study the shortest path problem with adversarial costs and known transition.
We show that the minimax regret is $widetildeO(sqrtDTstar K)$ and $widetildeO(sqrtDTstar SA K)$ for the full-information setting and the bandit feedback setting.
arXiv Detail & Related papers (2020-12-07T20:55:28Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.