A Consistency-Aware Spot-Guided Transformer for Versatile and Hierarchical Point Cloud Registration
- URL: http://arxiv.org/abs/2410.10295v1
- Date: Mon, 14 Oct 2024 08:48:25 GMT
- Title: A Consistency-Aware Spot-Guided Transformer for Versatile and Hierarchical Point Cloud Registration
- Authors: Renlang Huang, Yufan Tang, Jiming Chen, Liang Li,
- Abstract summary: We develop a consistency-aware spot-guided Transformer (CAST)
CAST incorporates a spot-guided cross-attention module to avoid interfering with irrelevant areas.
A lightweight fine matching module for both sparse keypoints and dense features can estimate the transformation accurately.
- Score: 9.609585217048664
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning-based feature matching has shown great superiority for point cloud registration in the absence of pose priors. Although coarse-to-fine matching approaches are prevalent, the coarse matching of existing methods is typically sparse and loose without consideration of geometric consistency, which makes the subsequent fine matching rely on ineffective optimal transport and hypothesis-and-selection methods for consistency. Therefore, these methods are neither efficient nor scalable for real-time applications such as odometry in robotics. To address these issues, we design a consistency-aware spot-guided Transformer (CAST), which incorporates a spot-guided cross-attention module to avoid interfering with irrelevant areas, and a consistency-aware self-attention module to enhance matching capabilities with geometrically consistent correspondences. Furthermore, a lightweight fine matching module for both sparse keypoints and dense features can estimate the transformation accurately. Extensive experiments on both outdoor LiDAR point cloud datasets and indoor RGBD point cloud datasets demonstrate that our method achieves state-of-the-art accuracy, efficiency, and robustness.
Related papers
- Geometry-aware Feature Matching for Large-Scale Structure from Motion [10.645087195983201]
We introduce geometry cues in addition to color cues to fill gaps when there is less overlap in large-scale scenarios.
Our approach ensures that the denser correspondences from detector-free methods are geometrically consistent and more accurate.
It outperforms state-of-the-art feature matching methods on benchmark datasets.
arXiv Detail & Related papers (2024-09-03T21:41:35Z) - OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
We present a robust refinement method for estimating oriented normals from unstructured point clouds.
Our framework incorporates sign orientation and data augmentation in the feature space to refine the initial oriented normals.
To address the issue of noise-caused direction inconsistency existing in previous approaches, we introduce a new metric called the Chamfer Normal Distance.
arXiv Detail & Related papers (2024-09-02T09:30:02Z) - BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration [28.75341781515012]
The goal of this paper is to address the problem of global point cloud registration (PCR) i.e., finding the optimal alignment between point clouds.
We show that state-of-the-art deep learning methods suffer from huge performance degradation when the point clouds are arbitrarily placed in space.
arXiv Detail & Related papers (2024-07-11T17:58:10Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - MEDPNet: Achieving High-Precision Adaptive Registration for Complex Die Castings [10.504847830252254]
This paper proposes a high-precision adaptive registration method called Multiscale Efficient Deep Closest Point (MEDPNet)
The MEDPNet method performs coarse die-casting point cloud data registration using the Efficient-DCP method, followed by precision registration using the Multiscale feature fusion dual-channel registration (MDR) method.
Our proposed method demonstrates excellent performance compared to state-of-the-art geometric and learning-based registration methods when applied to complex die-casting point cloud data.
arXiv Detail & Related papers (2024-03-15T03:42:38Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
Probabilistic 3D point cloud registration methods have shown competitive performance in overcoming noise, outliers, and density variations.
This paper proposes a novel overlap-guided probabilistic registration approach that computes the optimal transformation from matched Gaussian Mixture Model (GMM) parameters.
arXiv Detail & Related papers (2022-10-17T08:02:33Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
We propose an efficient structure named Correspondence Efficient Transformer (ECO-TR) by finding correspondences in a coarse-to-fine manner.
To achieve this, multiple transformer blocks are stage-wisely connected to gradually refine the predicted coordinates.
Experiments on various sparse and dense matching tasks demonstrate the superiority of our method in both efficiency and effectiveness against existing state-of-the-arts.
arXiv Detail & Related papers (2022-09-25T13:05:33Z) - UTOPIC: Uncertainty-aware Overlap Prediction Network for Partial Point
Cloud Registration [34.921141735367655]
We propose a novel uncertainty-aware overlap prediction network, dubbed UTOPIC, to tackle the ambiguous overlap prediction problem.
We induce the feature extractor to implicitly perceive the shape knowledge through a completion decoder, and present a geometric relation embedding for Transformer.
With the merits of more reliable overlap scores and more precise dense correspondences, UTOPIC can achieve stable and accurate registration results.
arXiv Detail & Related papers (2022-08-04T15:16:28Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z) - Self-Point-Flow: Self-Supervised Scene Flow Estimation from Point Clouds
with Optimal Transport and Random Walk [59.87525177207915]
We develop a self-supervised method to establish correspondences between two point clouds to approximate scene flow.
Our method achieves state-of-the-art performance among self-supervised learning methods.
arXiv Detail & Related papers (2021-05-18T03:12:42Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.