TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs
- URL: http://arxiv.org/abs/2410.10479v1
- Date: Mon, 14 Oct 2024 13:15:34 GMT
- Title: TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs
- Authors: Haochuan Wang, Xiachong Feng, Lei Li, Zhanyue Qin, Dianbo Sui, Lingpeng Kong,
- Abstract summary: We propose TMGBench, a benchmark with comprehensive game type coverage, novel scenarios, and flexible organization.
Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games.
We also employ synthetic data generation to create diverse, higher-quality scenarios through topic guidance and human inspection.
- Score: 45.06415588947462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of large language models (LLMs) has accelerated their application in reasoning, with strategic reasoning drawing increasing attention. To evaluate LLMs' strategic reasoning capabilities, game theory, with its concise structure, has become a preferred approach. However, current research focuses on a limited selection of games, resulting in low coverage. Classic game scenarios risk data leakage, and existing benchmarks often lack extensibility, making them inadequate for evaluating state-of-the-art models. To address these challenges, we propose TMGBench, a benchmark with comprehensive game type coverage, novel scenarios, and flexible organization. Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games. We also employ synthetic data generation to create diverse, higher-quality scenarios through topic guidance and human inspection, referred to as story-based games. Lastly, we provide a sustainable framework for increasingly powerful LLMs by treating these games as atomic units and organizing them into more complex forms via sequential, parallel, and nested structures. Our comprehensive evaluation of mainstream LLMs covers tests on rational reasoning, robustness, Theory-of-Mind (ToM), and reasoning in complex forms. Results reveal flaws in accuracy, consistency, and varying mastery of ToM. Additionally, o1-mini, OpenAI's latest reasoning model, achieved accuracy rates of 66.6%, 60.0%, and 70.0% on sequential, parallel, and nested games, highlighting TMGBench's challenges.
Related papers
- LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models [87.49676980090555]
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities.
We introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs.
arXiv Detail & Related papers (2024-08-28T13:16:41Z) - GameBench: Evaluating Strategic Reasoning Abilities of LLM Agents [4.209869303518743]
We introduce GameBench, a cross-domain benchmark for evaluating strategic reasoning abilities of large language models.
Our evaluations use GPT-3 and GPT-4 in their base form along with two scaffolding frameworks designed to enhance strategic reasoning ability: Chain-of-Thought (CoT) prompting and Reasoning Via Planning (RAP)
Our results show that none of the tested models match human performance, and at worst GPT-4 performs worse than random action.
arXiv Detail & Related papers (2024-06-07T00:28:43Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
We introduce MuSR, a dataset for evaluating language models on soft reasoning tasks specified in a natural language narrative.
This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm.
Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning.
arXiv Detail & Related papers (2023-10-24T17:59:20Z) - GameEval: Evaluating LLMs on Conversational Games [93.40433639746331]
We propose GameEval, a novel approach to evaluating large language models (LLMs)
GameEval treats LLMs as game players and assigns them distinct roles with specific goals achieved by launching conversations of various forms.
We show that GameEval can effectively differentiate the capabilities of various LLMs, providing a comprehensive assessment of their integrated abilities to solve complex problems.
arXiv Detail & Related papers (2023-08-19T14:33:40Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.