TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs
- URL: http://arxiv.org/abs/2410.10479v2
- Date: Tue, 27 May 2025 14:29:54 GMT
- Title: TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs
- Authors: Haochuan Wang, Xiachong Feng, Lei Li, Yu Guo, Zhanyue Qin, Dianbo Sui, Lingpeng Kong,
- Abstract summary: We propose TMGBench, characterized by comprehensive game type coverage, diverse scenarios and flexible game organization.<n>Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games in our benchmark.<n>To provide a sustainable evaluation framework adaptable to increasingly powerful LLMs, we treat the aforementioned games as atomic units.
- Score: 45.12542636218608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of large language models has accelerated their application in reasoning, with strategic reasoning drawing increasing attention. To evaluate the strategic reasoning capabilities of LLMs, game theory, with its concise structure, has become the preferred approach for many researchers. However, current research typically focuses on a limited selection of games, resulting in low coverage of game types. Additionally, classic game scenarios carry risks of data leakage, and the benchmarks used often lack extensibility, rendering them inadequate for evaluating state-of-the-art models. To address these challenges, we propose TMGBench, characterized by comprehensive game type coverage, diverse scenarios and flexible game organization. Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games in our benchmark; we also synthetize diverse, higher-quality game scenarios for each classic game, which we refer to as story-based games. Lastly, to provide a sustainable evaluation framework adaptable to increasingly powerful LLMs, we treat the aforementioned games as atomic units and organize them into more complex forms through sequential, parallel, and nested structures. We conducted a comprehensive evaluation of mainstream LLMs, covering tests on rational reasoning, reasoning robustness, Theory-of-Mind capabilities, and reasoning in complex game forms. The results revealed LLMs still have flaws in the accuracy and consistency of strategic reasoning processes, and their levels of mastery over Theory-of-Mind also vary. Additionally, SOTA models like o3-mini, Qwen3 and deepseek-reasoner, were also evaluated across the sequential, parallel, and nested game structures while the results highlighted the challenges posed by TMGBench.
Related papers
- Who is a Better Player: LLM against LLM [53.46608216197315]
We propose an adversarial benchmarking framework to assess the comprehensive performance of Large Language Models (LLMs) through board games competition.<n>We introduce Qi Town, a specialized evaluation platform that supports 5 widely played games and involves 20 LLM-driven players.
arXiv Detail & Related papers (2025-08-05T06:41:47Z) - KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation [78.96590724864606]
We introduce the Knowledge Orthogonal Reasoning Gymnasium (KORGym), a dynamic evaluation platform inspired by KOR-Bench and Gymnasium.<n>KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios.
arXiv Detail & Related papers (2025-05-20T16:06:32Z) - ZeroSumEval: Scaling LLM Evaluation with Inter-Model Competition [14.753916893216129]
ZeroSumEval is a novel competition-based evaluation protocol that leverages zero-sum games to assess Large Language Models (LLMs)
ZeroSumEval encompasses a diverse suite of games, including security challenges (PyJail), classic games (Chess, Liar's Dice, Poker), knowledge tests (MathQuiz), and persuasion challenges (Gandalf, Debate)
arXiv Detail & Related papers (2025-04-17T01:23:50Z) - ZeroSumEval: An Extensible Framework For Scaling LLM Evaluation with Inter-Model Competition [14.753916893216129]
We introduce ZeroSumEval, a dynamic, competition-based, and evolving evaluation framework for Large Language Models (LLMs)
ZeroSumEval encompasses a diverse suite of games, including security challenges (Capture the Flag), classic board games (chess), and knowledge tests (MathQuiz)
arXiv Detail & Related papers (2025-03-10T16:54:27Z) - RPGBENCH: Evaluating Large Language Models as Role-Playing Game Engines [34.002194150560086]
We present RPGBench, the first benchmark designed to evaluate large language models (LLMs) as text-based role-playing game (RPG) engines.<n> RPGBench comprises two core tasks: Game Creation (GC) and Game Simulation (GS)
arXiv Detail & Related papers (2025-02-01T23:40:24Z) - Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games [54.49589494014147]
GAMEBoT is a gaming arena designed for rigorous assessment of Large Language Models.
We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics.
Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts.
arXiv Detail & Related papers (2024-12-18T08:32:53Z) - LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models [87.49676980090555]
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities.
We introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs.
arXiv Detail & Related papers (2024-08-28T13:16:41Z) - GameBench: Evaluating Strategic Reasoning Abilities of LLM Agents [4.209869303518743]
We introduce GameBench, a cross-domain benchmark for evaluating strategic reasoning abilities of large language models.
Our evaluations use GPT-3 and GPT-4 in their base form along with two scaffolding frameworks designed to enhance strategic reasoning ability: Chain-of-Thought (CoT) prompting and Reasoning Via Planning (RAP)
Our results show that none of the tested models match human performance, and at worst GPT-4 performs worse than random action.
arXiv Detail & Related papers (2024-06-07T00:28:43Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
We introduce MuSR, a dataset for evaluating language models on soft reasoning tasks specified in a natural language narrative.
This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm.
Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning.
arXiv Detail & Related papers (2023-10-24T17:59:20Z) - GameEval: Evaluating LLMs on Conversational Games [93.40433639746331]
We propose GameEval, a novel approach to evaluating large language models (LLMs)
GameEval treats LLMs as game players and assigns them distinct roles with specific goals achieved by launching conversations of various forms.
We show that GameEval can effectively differentiate the capabilities of various LLMs, providing a comprehensive assessment of their integrated abilities to solve complex problems.
arXiv Detail & Related papers (2023-08-19T14:33:40Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.