Arrhythmia Classification Using Graph Neural Networks Based on Correlation Matrix
- URL: http://arxiv.org/abs/2410.10758v3
- Date: Wed, 13 Nov 2024 05:11:05 GMT
- Title: Arrhythmia Classification Using Graph Neural Networks Based on Correlation Matrix
- Authors: Seungwoo Han,
- Abstract summary: We generated an adjacency matrix using correlation matrix of extracted features and applied a graph neural network to classify arrhythmias.
The results demonstrated that precision and recall for all arrhythmia classes exceeded 50%, suggesting that this method can be considered an approach for arrhythmia classification.
- Score: 0.0
- License:
- Abstract: With the advancements in graph neural network, there has been increasing interest in applying this network to ECG signal analysis. In this study, we generated an adjacency matrix using correlation matrix of extracted features and applied a graph neural network to classify arrhythmias. The proposed model was compared with existing approaches from the literature. The results demonstrated that precision and recall for all arrhythmia classes exceeded 50%, suggesting that this method can be considered an approach for arrhythmia classification.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Graph Neural Networks for Topological Feature Extraction in ECG
Classification [11.337163242503166]
We propose three techniques for classifying heartbeats using graph neural networks.
The three proposed techniques are capable of making arrhythmia classification predictions with the accuracy of 99.38, 98.76, and 91.93 percent, respectively.
arXiv Detail & Related papers (2023-11-02T16:14:34Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - Analysis of a Deep Learning Model for 12-Lead ECG Classification Reveals
Learned Features Similar to Diagnostic Criteria [1.055404869921767]
We apply attribution methods to a pre-trained deep neural network (DNN) for 12-lead electrocardiography classification.
We classify data from a public data set and the attribution methods assign a "relevance score" to each sample of the classified signals.
arXiv Detail & Related papers (2022-11-03T12:07:00Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification.
An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features.
arXiv Detail & Related papers (2022-10-31T07:36:48Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG.
A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this.
Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38%.
arXiv Detail & Related papers (2022-10-05T08:14:51Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
We propose a method to automatically find a compact and problem-specific network for graph convolutional networks in a progressive manner.
Experimental results on two datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance.
arXiv Detail & Related papers (2020-11-11T09:57:49Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.