SplitLLM: Collaborative Inference of LLMs for Model Placement and Throughput Optimization
- URL: http://arxiv.org/abs/2410.10759v2
- Date: Wed, 16 Oct 2024 16:31:37 GMT
- Title: SplitLLM: Collaborative Inference of LLMs for Model Placement and Throughput Optimization
- Authors: Akrit Mudvari, Yuang Jiang, Leandros Tassiulas,
- Abstract summary: Large language models (LLMs) play a crucial role in our daily lives due to their ability to understand and generate human-like text.
In this report, we design a collaborative inference architecture between a server and its clients to alleviate the throughput limit.
We show in the experiments that we are able to efficiently distribute the workload allowing for roughly 1/3 reduction in the server workload.
- Score: 8.121663525764294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have been a disruptive innovation in recent years, and they play a crucial role in our daily lives due to their ability to understand and generate human-like text. Their capabilities include natural language understanding, information retrieval and search, translation, chatbots, virtual assistance, and many more. However, it is well known that LLMs are massive in terms of the number of parameters. Additionally, the self-attention mechanism in the underlying architecture of LLMs, Transformers, has quadratic complexity in terms of both computation and memory with respect to the input sequence length. For these reasons, LLM inference is resource-intensive, and thus, the throughput of LLM inference is limited, especially for the longer sequences. In this report, we design a collaborative inference architecture between a server and its clients to alleviate the throughput limit. In this design, we consider the available resources on both sides, i.e., the computation and communication costs. We develop a dynamic programming-based algorithm to optimally allocate computation between the server and the client device to increase the server throughput, while not violating the service level agreement (SLA). We show in the experiments that we are able to efficiently distribute the workload allowing for roughly 1/3 reduction in the server workload, while achieving 19 percent improvement over a greedy method. As a result, we are able to demonstrate that, in an environment with different types of LLM inference requests, the throughput of the server is improved.
Related papers
- DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - SVIP: Towards Verifiable Inference of Open-source Large Language Models [33.910670775972335]
Open-source Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language understanding and generation, leading to widespread adoption across various domains.
Their increasing model sizes render local deployment impractical for individual users, pushing many to rely on computing service providers for inference through a blackbox API.
This reliance introduces a new risk: a computing provider may stealthily substitute the requested LLM with a smaller, less capable model without consent from users, thereby delivering inferior outputs while benefiting from cost savings.
arXiv Detail & Related papers (2024-10-29T17:52:45Z) - Skipping Computations in Multimodal LLMs [63.29737699997859]
This study investigates redundancy in Multimodal Large Language Models (MLLMs) during inference.
We propose different methods to skip computations, such as skipping entire blocks, FFN or self-attention layers.
Our findings validate that significant amount of computations can be avoided at inference time.
arXiv Detail & Related papers (2024-10-12T09:21:45Z) - Large Language Models and the Extended Church-Turing Thesis [0.0]
We investigate the computational power of large language models (LLMs) by the classical means of computability and computational complexity theory.
We show that any fixed (non-adaptive) LLM is computationally equivalent to a, possibly very large, deterministic finite-state transducer.
We discuss the merits of our findings in the broader context of several related disciplines and philosophies.
arXiv Detail & Related papers (2024-09-11T03:09:55Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
We show how to optimize Large Language Models (LLMs) inference for analytical workloads that invoke LLMs within relational queries.
We implement these optimizations in Apache Spark, with vLLM as the model serving backend.
We achieve up to 4.4x improvement in end-to-end latency on a benchmark of diverse LLM-based queries on real datasets.
arXiv Detail & Related papers (2024-03-09T07:01:44Z) - InferCept: Efficient Intercept Support for Augmented Large Language Model Inference [9.669098954493114]
This paper presents InferCept, the first LLM inference framework targeting augmented LLMs.
InferCept minimizes the GPU resource waste caused by LLM interceptions and dedicates saved memory for serving more requests.
InferCept improves the overall serving throughput by 1.6x-2x and completes 2x more requests per second compared to the state-of-the-art LLM inference systems.
arXiv Detail & Related papers (2024-02-02T19:47:57Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.