Deep Linear Probe Generators for Weight Space Learning
- URL: http://arxiv.org/abs/2410.10811v1
- Date: Mon, 14 Oct 2024 17:59:41 GMT
- Title: Deep Linear Probe Generators for Weight Space Learning
- Authors: Jonathan Kahana, Eliahu Horwitz, Imri Shuval, Yedid Hoshen,
- Abstract summary: Probing represents a model by passing a set of learned inputs (probes) through the model, and training a predictor on top of the corresponding outputs.
ProbeGen adds a shared generator module with a deep linear architecture, providing an inductive bias towards structured probes.
ProbeGen performs significantly better than the state-of-the-art and is very efficient, requiring between 30 to 1000 times fewer FLOPs than other top approaches.
- Score: 39.90685550999956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weight space learning aims to extract information about a neural network, such as its training dataset or generalization error. Recent approaches learn directly from model weights, but this presents many challenges as weights are high-dimensional and include permutation symmetries between neurons. An alternative approach, Probing, represents a model by passing a set of learned inputs (probes) through the model, and training a predictor on top of the corresponding outputs. Although probing is typically not used as a stand alone approach, our preliminary experiment found that a vanilla probing baseline worked surprisingly well. However, we discover that current probe learning strategies are ineffective. We therefore propose Deep Linear Probe Generators (ProbeGen), a simple and effective modification to probing approaches. ProbeGen adds a shared generator module with a deep linear architecture, providing an inductive bias towards structured probes thus reducing overfitting. While simple, ProbeGen performs significantly better than the state-of-the-art and is very efficient, requiring between 30 to 1000 times fewer FLOPs than other top approaches.
Related papers
- No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers [41.867855070932706]
We consider the sampling problem, where the aim is to draw samples from a distribution whose density is known only up to a normalization constant.
Recent breakthroughs in generative modeling to approximate a high-dimensional data distribution have sparked significant interest in developing neural network-based methods for this challenging problem.
We propose an elegant modification to previous methods, which allows simulation-free training with the help of a time-dependent normalizing flow.
arXiv Detail & Related papers (2025-02-10T17:13:11Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Learning from Linear Algebra: A Graph Neural Network Approach to Preconditioner Design for Conjugate Gradient Solvers [42.69799418639716]
Deep learning models may be used to precondition residuals during iteration of such linear solvers as the conjugate gradient (CG) method.
Neural network models require an enormous number of parameters to approximate well in this setup.
In our work, we recall well-established preconditioners from linear algebra and use them as a starting point for training the GNN.
arXiv Detail & Related papers (2024-05-24T13:44:30Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - A Metalearned Neural Circuit for Nonparametric Bayesian Inference [4.767884267554628]
Most applications of machine learning to classification assume a closed set of balanced classes.
This is at odds with the real world, where class occurrence statistics often follow a long-tailed power-law distribution.
We present a method for extracting the inductive bias from a nonparametric Bayesian model and transferring it to an artificial neural network.
arXiv Detail & Related papers (2023-11-24T16:43:17Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - Learning to Jump: Thinning and Thickening Latent Counts for Generative
Modeling [69.60713300418467]
Learning to jump is a general recipe for generative modeling of various types of data.
We demonstrate when learning to jump is expected to perform comparably to learning to denoise, and when it is expected to perform better.
arXiv Detail & Related papers (2023-05-28T05:38:28Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
We study the compute-optimal trade-off between model and training data set sizes for large neural networks.
Our result suggests a linear relation similar to that supported by the empirical analysis of chinchilla.
arXiv Detail & Related papers (2022-12-02T18:46:41Z) - What learning algorithm is in-context learning? Investigations with
linear models [87.91612418166464]
We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly.
We show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression.
Preliminary evidence that in-context learners share algorithmic features with these predictors.
arXiv Detail & Related papers (2022-11-28T18:59:51Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
We introduce a new lower bound to the marginal likelihood, which allows us to perform inference for a larger class of likelihood functions.
We work towards bringing this approach to neural networks by using an architecture with a Gaussian process in the last layer.
arXiv Detail & Related papers (2021-06-14T15:40:51Z) - Deep transfer learning for improving single-EEG arousal detection [63.52264764099532]
Two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models.
We train a baseline model and replace the first two layers to prepare the architecture for single-channel electroencephalography data.
Using a fine-tuning strategy, our model yields similar performance to the baseline model and was significantly better than a comparable single-channel model.
arXiv Detail & Related papers (2020-04-10T16:51:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.